Skip to main content
Log in

Crystallization of post-consumer polypropylene in the presence of β-nucleating agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to investigate the crystallization behavior of post-consumer waste polypropylene (PCW-PP) in the presence of an aryl amide derivative β-nucleating agent (TMB-5), differential scanning calorimetry (DSC), wide-angle X-ray diffraction and polarized-light optical microscopy were used. The content of calcium carbonate (CaCO3) in four kinds of PCW-PP, as well as the relative β-content of PCW-PP nucleated by 0.3 mass% TMB-5, is estimated by thermogravimetric analysis and DSC. The results indicate that the commercial grade TMB-5 has strong β-nucleating effect on the crystallization of PCW-PP and increases the crystallization temperature of PCW-PP in the presence of different content of CaCO3 with α-nucleating effect. As a result, PCW-PP with β-phase content higher than 75% is prepared through the addition of 0.3 mass% TMB-5, which has significance for high-value added recycling of PCW-PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siddique R, Khatib J, Kaur I. Use of recycled plastic in concrete: a review. Waste Manage. 2008;28(10):1835–52.

    Article  CAS  Google Scholar 

  2. Al-Salem SM, Lettieri P, Baeyens J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust. 2010;36(1):103–29.

    Article  CAS  Google Scholar 

  3. Datta J, Kopczyńska P. From polymer waste to potential main industrial products: actual state of recycling and recovering. Crit Rev Environ Sci Technol. 2016;46(10):905–46.

    Article  CAS  Google Scholar 

  4. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F. Recycling of plastic solid waste: a state of art review and future applications. Compos Part B Eng. 2017;115:409–22.

    Article  CAS  Google Scholar 

  5. Saad NA, Hadi NJ, Mohamed DJ. Study the effect of CaCO3 nanoparticles on the mechanical properties of virgin and waste polypropylene. Adv Mater Res. 2014;1016(12):23–33.

    Google Scholar 

  6. Lin YH, Yang MH. Chemical catalysed recycling of waste polymers: catalytic conversion of polypropylene into fuels and chemicals over spent FCC catalyst in a fluidised-bed reactor. Polym Degrad Stabil. 2007;92(5):813–21.

    Article  CAS  Google Scholar 

  7. Brachet P, Høydal LT, Hinrichsen EL, Melum F. Modification of mechanical properties of recycled polypropylene from post-consumer containers. Waste Manage. 2008;28(12):2456–64.

    Article  CAS  Google Scholar 

  8. Jose J, Nag A, Nando GB. Processing and characterization of recycled polypropylene and acrylonitrile butadiene rubber blends. J Polym Environ. 2010;18(3):155–66.

    Article  CAS  Google Scholar 

  9. Jiménez A, Torre L, Kenny JM. Processing and properties of recycled polypropylene modified with elastomers. Plast Rubber Compos. 2013;32(8–9):357–67.

    Google Scholar 

  10. Papageorgiou DG, Chrissafis K, Bikiaris DN. β-nucleated polypropylene: processing, properties and nanocomposites. Polym Rev. 2015;55(4):596–629.

    Article  CAS  Google Scholar 

  11. Zhang P, Liu X, Li Y. Influence of β-nucleating agent on the mechanics and crystallization characteristics of polypropylene. Mater Sci Eng A. 2006;434:310–3.

    Article  Google Scholar 

  12. Krache R, Benavente R, López-Majada JM, Perena JM, Cerrada ML, Pérez E. Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40(19):6871–8.

    Article  CAS  Google Scholar 

  13. Varga J, Menyhárd A. Effect of solubility and nucleating duality of N, N′-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40(7):2422–31.

    Article  CAS  Google Scholar 

  14. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci B. 2002;41(4–6):1121–71.

    Article  Google Scholar 

  15. Grein C. Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci. 2005;188:43–104.

    Article  CAS  Google Scholar 

  16. Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128(2):925–35.

    Article  Google Scholar 

  17. Zhou PZ, Zhang YF, Lin XF. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132(3):1845–52.

    Article  CAS  Google Scholar 

  18. He B, Lin XF, Zhang YF. Effect of a novel compound nucleating agent calcium sulfate whisker/β nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132(2):1145–52.

    Article  CAS  Google Scholar 

  19. Craig IH, White JR, Kin PC. Crystallization and chemi-crystallization of recycled photo-degraded polypropylene. Polymer. 2005;46:505–12.

    Article  CAS  Google Scholar 

  20. Nasir A, Yasin T, Islam A. Thermo-oxidative degradation behavior of recycled polypropylene. J Appl Polym Sci. 2011;119(6):3315–20.

    Article  CAS  Google Scholar 

  21. Rabello MS, White JR. Crystallization and melting behaviour of photodegraded polypropylene—I. Chemi-Cryst Polym. 1997;38(26):6379–87.

    CAS  Google Scholar 

  22. Rabello MS, White JR. Photodegradation of polypropylene containing a nucleating agent. J Appl Polym Sci. 1997;64(13):2505–17.

    Article  CAS  Google Scholar 

  23. Wang K, Bahlouli N, Addiego F, Ahzi S, Rémond Y, Ruch D, Muller R. Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym Degrad Stabil. 2013;98:1275–86.

    Article  CAS  Google Scholar 

  24. Wang K, Addiego F, Bahlouli N, Ahzi S, Rémond Y, Toniazzo V. Impact response of recycled polypropylene-based composites under a wide range of temperature: effect of filler content and recycling. Compos Sci Technol. 2014;95:89–99.

    Article  CAS  Google Scholar 

  25. Majumdar J, Cser F, Jollands MC, Shanks RA. Thermal properties of polypropylene post-consumer waste (PP PCW). J Therm Anal Calorim. 2004;78(3):849–63.

    Article  CAS  Google Scholar 

  26. Ha KH. Identification by thermal analysis for open-loop recycling of post-consumer waste polypropylene to apply refrigerator plastics. Mater Design. 2012;36:359–65.

    Article  CAS  Google Scholar 

  27. Li JX, Cheung WL. Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer. 1999;40(8):2085–8.

    Article  CAS  Google Scholar 

  28. Li JX, Cheung WL, Jia DM. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40(5):1219–22.

    Article  CAS  Google Scholar 

  29. Cser F, Shanks RA. Annealing of polypropylene/polyethylene blends near to the melting points in TMDSC. J Therm Anal Calorim. 1998;54:637–50.

    Article  CAS  Google Scholar 

  30. Song B, Wang Y, Bai H, Liu L, Li Y, Zhang J, Zhou Z. Crystallization and melting behaviors of maleic anhydride grafted poly(propylene) nucleated by an aryl amide derivative. J Therm Anal Calorim. 2010;99(2):563–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (Grant No. 51703058) and Research Foundation of Education Department of Hunan Province (Grant No. 18B292).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Ding or Heping Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Fu, H., Hua, C. et al. Crystallization of post-consumer polypropylene in the presence of β-nucleating agent. J Therm Anal Calorim 138, 379–385 (2019). https://doi.org/10.1007/s10973-019-08248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08248-y

Keywords

Navigation