Skip to main content

General Structure and Classification of Bioplastics and Biodegradable Plastics

  • Chapter
  • First Online:
Bioplastics for Sustainable Development

Abstract

The term “bioplastics” refers to chemically unrelated products that are manufactured exclusively or partially from renewable biomass sources such as agricultural products or microbes such as bacteria, yeast, and sometimes several nanometre-sized carbohydrate chains (polysaccharides). Bioplastics prepared from renewable means can be naturally recycled by biological processes, thus limiting the use of fossil fuels and shielding the environment. Biodegradable plastics are categorized as agro-polymers (starch, chitin, protein) and bio-polyesters (polyhydroxy-alkanoates, polylactic acid). Usually, foodstuffs with limited shelf life including fresh vegetables and fruits as well as those with long shelf life like cooked food items which are not in the need of increased oxygen supply are parceled using these bioplastics. Mainly, the enzymatic actions of microorganisms cause bioplastics polymers to decay into CO2, H2O, and other inorganic compounds. This current effort provides a general idea about bioplastics, aiming their production methods from biomass-based resources. Similarly, it will discuss the origin and classification of bioplastics. Furthermore, the details about the structure and components of bioplastics including polymers and the ways how these polymers are biochemically converted into bioplastics will also be reviewed. Moreover, different biopolymers currently under research will also be explored. With further improvements in the biopolymer area of research in the coming future, it can be more effectively utilized in various fields of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albertsson AC, Karlsson S (1995) Degradable polymers for the future. Acta Polymerica 46(2):114–123

    Article  CAS  Google Scholar 

  • Baker I (2018) Fifty materials that make the world. Springer, Cham

    Book  Google Scholar 

  • Boy R, Narayanan G, Kotek R (2018) Formation of cellulose and protein blend biofibers. In: Polysaccharide-based fibers and composites. Springer, New York, NY, pp 77–117

    Chapter  Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65(2–3):127–161

    Article  CAS  PubMed  Google Scholar 

  • Calero-Bernal R, Santín M, Maloney JG, Martín-Pérez M, Habela MA, Fernández-García JL, Figueiredo A, Nájera F, Palacios MJ, Mateo M (2020) Blastocystis sp. subtype diversity in wild carnivore species from Spain. J Eukaryot Microbiol 67(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112(4):2082–2099

    Article  CAS  PubMed  Google Scholar 

  • Cyras VP, Commisso MS, Mauri AN, Vázquez A (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106(2):749–756

    Article  CAS  Google Scholar 

  • Ding WD, Pervaiz M, Sain M (2018) Cellulose-enabled polylactic acid (PLA) nanocomposites: recent developments and emerging trends. In: Functional biopolymers. Springer, New York, NY, pp 183–216

    Chapter  Google Scholar 

  • Ezeoha S, Ezenwanne J (2013) Production of biodegradable plastic packaging film from cassava starch. IOSR J Eng 3(10):14–20

    Article  Google Scholar 

  • Flieger M, Kantorova M, Prell A, Řezanka T, Votruba J (2003) Biodegradable plastics from renewable sources. Folia Microbiol 48(1):27

    Article  CAS  Google Scholar 

  • Fonseca AC, Gil MH, Simões PN (2014) Biodegradable poly (ester amide) s–a remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 39(7):1291–1311

    Article  CAS  Google Scholar 

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156(3):201–207

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Sudo M, Sugimura T, Inagaki Y (2004) Synthesis of novel block copolymers containing polyamide4 segments and control of their biodegradability. J Appl Polym Sci 92(6):3492–3498

    Article  CAS  Google Scholar 

  • Itoh Y, Kawase T, Nikaidou N, Fukada H, Mitsutomi M, Watanabe T, Itoh Y (2002) Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Biosci Biotechnol Biochem 66(5):1084–1092

    Article  CAS  PubMed  Google Scholar 

  • Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1(1):1117749

    Article  CAS  Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-Lactic Acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  PubMed  Google Scholar 

  • Jariyavidyanont K, Focke W, Androsch R (2019) Thermal properties of biobased polyamide 11. In: Thermal properties of bio-based polymers. Springer, Cham, pp 143–187

    Chapter  Google Scholar 

  • Jaskolski M (2013) In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin

    Google Scholar 

  • Królczyk GM, Wzorek M, Król A, Kochan O, Su J, Kacprzyk J (2020) Sustainable production: novel trends in energy, environment and material systems. Springer Nature, Cham

    Book  Google Scholar 

  • Kumar S, Thakur K (2017) Bioplastics-classification, production and their potential food applications. J Hill Agric 8(2):118–129

    Article  Google Scholar 

  • Levchik S, Costa L, Camino G (1992) Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamides. I. Polyamides 11 and 12. Polym Degrad Stab 36(1):31–41

    Article  CAS  Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques–a review. Chemosphere 73(4):429–442

    Article  CAS  PubMed  Google Scholar 

  • Malathi A, Santhosh K, Udaykumar N (2014) Recent trends of Biodegradable polymer: biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Curr Trend Technol Sci 3(2):73–79

    Google Scholar 

  • Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50(4):379–386

    Article  CAS  Google Scholar 

  • Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym Degrad Stab 91(3):620–627

    Article  CAS  Google Scholar 

  • May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12(1):79–99

    Article  CAS  Google Scholar 

  • Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mat Chem A 1(43):13379–13398

    Article  CAS  Google Scholar 

  • Mousa MH, Dong Y, Davies IJ (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomater 65(5):225–254

    Article  CAS  Google Scholar 

  • Mudenur C, Mondal K, Singh U, Katiyar V (2019) Production of polyhydroxyalkanoates and its potential applications. In: Advances in sustainable polymers. Springer, New York, NY, pp 131–164

    Chapter  Google Scholar 

  • Muhammadi S, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Article  CAS  Google Scholar 

  • Muneer F, Johansson E, Hedenqvist MS, Gällstedt M, Newson WR (2014) Preparation, properties, protein cross-linking and biodegradability of plasticizer-solvent free hemp fibre reinforced wheat gluten, glutenin, and gliadin composites. Bioresources 9(3):5246–5261

    Article  Google Scholar 

  • Page I (2000) Polyamides as engineering thermoplastic materials, vol 11. Smithers Rapra Technology, Shrewsbury

    Google Scholar 

  • Palanisamy K, Jeyaseelan A, Murugesan K, Palanisamy SB (2019) Biopolymer technologies for environmental applications. In: Nanoscience and biotechnology for environmental applications. Springer, New York, NY, pp 55–83

    Chapter  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264(26):15298–15303

    Article  CAS  PubMed  Google Scholar 

  • Polyesters DA, Albertson A (2001) Advances in polymer science, vol 157. Springer, Berlin

    Google Scholar 

  • Rajendran N, Puppala S, Sneha Raj M, Ruth Angeeleena B, Rajam C (2012) Seaweeds can be a new source for bioplastics. J Pharm Res 5(3):1476–1479

    Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35(3):338–356

    Article  CAS  Google Scholar 

  • Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146

    Article  CAS  PubMed  Google Scholar 

  • Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42(2):612–617

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Robyt JF (2008) Starch: structure, properties, chemistry, and enzymology. In: Glycoscience. Springer, Berlin, p 1437

    Chapter  Google Scholar 

  • Rodriguez-Galan A, Franco L, Puiggali J (2011) Degradable poly (ester amide) s for biomedical applications. Polymers 3(1):65–99

    Article  CAS  Google Scholar 

  • Ross G, Ross S, Tighe BJ (2017) Bioplastics: new routes, new products. In: Brydson’s plastics materials. Elsevier, Amsterdam, pp 631–652

    Chapter  Google Scholar 

  • Rulkens R, Koning C (2012) Chemistry and technology of polyamides. In: Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 431–467

    Chapter  Google Scholar 

  • Schuppan D, Gisbert-Schuppan K (2019) Wheat, gluten and ATI: an overview. In: Wheat syndromes. Springer, New York, NY, pp 5–10

    Chapter  Google Scholar 

  • Sherazi TA (2014) Ultrahigh molecular weight polyethylene. In: Drioli E, Giorno L (eds) Encyclopedia of membranes, vol 10. Springer, Berlin, pp 973–978

    Google Scholar 

  • Shiramizu M, Toste FD (2011) On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chem Eur J 17(44):12452–12457

    Article  CAS  PubMed  Google Scholar 

  • Song J, Murphy R, Narayan R, Davies G (2009) Biodegradable and compostable alternatives to conventional plastics. Phil Trans R Soc B Biol Sci 364(1526):2127–2139

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2012) Permeability in clay/polyesters nano-biocomposites. In: Environmental silicate nano-biocomposites. Springer, New York, NY, pp 237–264

    Chapter  Google Scholar 

  • Stevens CV (2013) Bio-based plastics: materials and applications. John Wiley & Sons, New York, NY

    Google Scholar 

  • Suszkiw J (2005) Electroactive bioplastics flex their industrial muscle. Agric Res 53(12):10

    Google Scholar 

  • Tabasi RY, Ajji A (2015) Selective degradation of biodegradable blends in simulated laboratory composting. Polym Degrad Stab 120:435–442

    Article  CAS  Google Scholar 

  • Thakur BR, Singh RK, Handa AK, Rao M (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37(1):47–73

    Article  CAS  PubMed  Google Scholar 

  • Thielen M (2010) Basics of bio-polyamaides. Bioplast Mag 5:50–53

    Google Scholar 

  • Thuwall M, Boldizar A, Rigdahl M (2006) Extrusion processing of high amylose potato starch materials. Carbohydr Polym 65(4):441–446

    Article  CAS  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Yue H-B, Cui Y-D, Shuttleworth P, Clark JH (2012) Preparation and characterisation of bioplastics made from cottonseed protein. Green Chem 14(7):2009–2016

    Article  CAS  Google Scholar 

  • Zepnik S (2010) Basics of cellulosics. Bioplast Mag 5:44–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dilshad, E., Waheed, H., Ali, U., Amin, A., Ahmed, I. (2021). General Structure and Classification of Bioplastics and Biodegradable Plastics. In: Kuddus, M., Roohi (eds) Bioplastics for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-1823-9_2

Download citation

Publish with us

Policies and ethics