Skip to main content
Log in

Influence of diameter on the degradation profile of multiwall carbon nanotubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ten multiwall carbon nanotubes purchased from two companies with diameters ranging from 7 to 100 nm with tapped bulk densities from 57 to 250 kg m−3 and with similar lengths and powder sizes were analyzed by thermogravimetric analysis in dynamic and isothermal mode to investigate the importance of the diameter size and tapped bulk density on the degradation behavior of carbon nanotubes. In the case where mass/heat transfer effects were eliminated, results showed that the oxidation temperature depends on diameter only at sufficiently small diameters. The number of surface defects as measured from the ID/IG ratio obtained from Raman spectroscopy was not correlated with degradation stability. The tapped bulk density, on the other hand, dominated the pattern of degradation at high enough heating rates where mass/heat transfer effects become appreciable. As found in previous work which examined nanotubes with roughly constant diameter, tapped bulk density linearly correlated with the ending oxidation temperature at sufficiently high heating rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–8.

    Article  CAS  Google Scholar 

  2. Mehra NK, Mishra V, Jain NK. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials. 2014;35(4):1267–83.

    Article  CAS  Google Scholar 

  3. Chen SJ, Zou B, Collins F, Zhao XL, Majumber M, Duan WH. Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon. 2014;77:1–10.

    Article  CAS  Google Scholar 

  4. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):1–13.

    Article  CAS  Google Scholar 

  5. Mansfield E, Kar A, Hooker SA. Applications of TGA in quality control of SWCNTs. Anal Bioanal Chem. 2010;396(3):1071–7.

    Article  CAS  Google Scholar 

  6. Kim D-Y, Yun YS, Kwon S-M, Jin H-J. Preparation of aspect ratio-controlled carbon nanotubes. Mol Cryst Liq Cryst. 2009;510(1):79/[1213]-86/[20].

    Google Scholar 

  7. Xu F, Sun LX, Zhang J, Qi YN, Yang LN, Ru HY, et al. Thermal stability of carbon nanotubes. J Therm Anal Calorim. 2010;102(2):785–91.

    Article  CAS  Google Scholar 

  8. Singh DK, Iyer PK, Giri PK. Diameter dependence of oxidative stability in multiwalled carbon nanotubes: role of defects and effect of vacuum annealing. J Appl Phys. 2010;108(8):084313.

    Article  Google Scholar 

  9. Kim DY, Yang C-M, Park YS, Kim KK, Jeong SY, Han JH, et al. Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition. Chem Phys Lett. 2005;413(1–3):135–41.

    Article  CAS  Google Scholar 

  10. Zhang H, Chen Y, Zeng G, Huang H, Xie Z, Jie X. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst. Mater Sci Eng, A. 2007;464(1–2):17–22.

    Article  Google Scholar 

  11. Zhou W, Ooi YH, Russo R, Papanek P, Luzzi DE, Fischer JE, et al. Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem Phys Lett. 2001;350(1–2):6–14.

    Article  CAS  Google Scholar 

  12. Ma J, Yu F, Yuan Z, Chen J. Diameter-dependent thermal-oxidative stability of single-walled carbon nanotubes synthesized by a floating catalytic chemical vapor deposition method. Appl Surf Sci. 2011;257(24):10471–6.

    Article  CAS  Google Scholar 

  13. Kowalska E, Kowalczyk P, Radomska J, Czerwosz E, Wronka H, Bystrzejewski M. Influenceof high vacuum annealing treatment on some properties of carbon nanotubes. J Therm Anal Calorim. 2006;86(1):115–9.

    Article  CAS  Google Scholar 

  14. Lin W, Moon K-S, Zhang S, Ding Y, Shang J, Chen M, et al. Microwave makes carbon nanotubes less defective. ACS Nano. 2010;4(3):1716–22.

    Article  CAS  Google Scholar 

  15. Huang W, Wang Y, Luo G, Wei F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon. 2003;41(13):2585–90.

    Article  CAS  Google Scholar 

  16. Hsieh Y-C, Chou Y-CL, Lin C-P, Hsieh T-F, Shu C-M. Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Qual Res. 2010;10(3):212–8.

    Article  CAS  Google Scholar 

  17. Liu P, Wang T. Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media. Appl Phys A. 2009;97(4):771–5.

    Article  CAS  Google Scholar 

  18. Li H, Zhao N, He C, Shi C, Du X, Li J. Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane. Mater Sci Eng, A. 2008;473(1–2):355–9.

    Article  Google Scholar 

  19. McKee GSB, Vecchio KS. Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes. J Phys Chem B. 2006;110(3):1179–86.

    Article  CAS  Google Scholar 

  20. Zapata HJA, Crossley S, Grady BP. Influence of tapped density on the degradation profile of multiwall carbon nanotubes. Thermochim Acta. 2017;654:140–5.

    Article  Google Scholar 

  21. Zhou W, Ooi YH, Russo R, Papanek P, Luzzi DE, Fischer JE, et al. Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem Phys Lett. 2001;350(1):6–14.

    Article  CAS  Google Scholar 

  22. Warner JH, Schäffel F, Zhong G, Rümmeli MH, Büchner B, Robertson J, et al. Investigating the diameter-dependent stability of single-walled carbon nanotubes. ACS Nano. 2009;3(6):1557–63.

    Article  CAS  Google Scholar 

  23. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  24. Sharma HN, Pahalagedara L, Joshi A, Suib SL, Mhadeshwar AB. Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis. Energy Fuels. 2012;26(9):5613–25.

    Article  CAS  Google Scholar 

  25. Zacharia RE, Simon SL. Dynamic and isothermal thermogravimetric analysis of a polycyanurate thermosetting system. Polym Eng Sci. 1998;38(4):566–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding to support this project was provided by the University of Oklahoma and Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Grady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata H, J.A., Simon, S.L. & Grady, B.P. Influence of diameter on the degradation profile of multiwall carbon nanotubes. J Therm Anal Calorim 138, 1351–1362 (2019). https://doi.org/10.1007/s10973-019-08137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08137-4

Keywords

Navigation