Skip to main content
Log in

Preparation and characterization of the Al/Fe2O3/RDX/NC nanocomposites by electrospray

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, an advanced electrospray process was successfully used to fabricate aluminum nanopowders (Al)/iron oxide nanopowders (Fe2O3)/hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)/nitrocellulose (NC) composite materials containing different RDX contents. Differential scanning calorimetric analysis indicates that the decomposition temperature of the RDX in the composition prepared by electrospray has a decrease of about 20 °C compared with the raw RDX. Combustion performances in air show that the RDX decreases combustion performance of nanothermites, and the combustion intensity decreases as the RDX content increases. Furthermore, the combustion cell test indicates that the maximum pressure peak has been greatly improved for the Al/Fe2O3/RDX/NC composites. The amount of released gas can be adjusted by the RDX content in Al/Fe2O3/RDX/NC composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Piercey DG, Klapötke TM. Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials. Cent Eur J Energ Mater. 2010;7(2):115–29.

    CAS  Google Scholar 

  2. Martirosyan KS. Nanoenergetic gas-generators: principles and applications. J Mater Chem. 2011;21:9400–5.

    Article  CAS  Google Scholar 

  3. Rossi C, Estéve A, Vashishta P. Nanoscale energetic materials. J Phys Chem Solids. 2010;71(2):57–8.

    Article  CAS  Google Scholar 

  4. Dreizin EL. Metal-based reactive nanomaterials. Prog Energy Combust Sci. 2009;35(2):141–67.

    Article  CAS  Google Scholar 

  5. Sanders VE, Asay BW, Foley TJ, Tappan BC, Pacheco AN, Son SF. Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3). J Propuls Power. 2007;23(4):707–14.

    Article  CAS  Google Scholar 

  6. Weismiller MR, Malchi JY, Yetter RA, Foley TJ. Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite. Proc Combust Inst. 2009;32(2):1895–903.

    Article  CAS  Google Scholar 

  7. Yan S, Jian G, Zachariah MR. Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl Mater Interfaces. 2012;4:6432–5.

    Article  CAS  Google Scholar 

  8. Farley C, Pantoya M. Reaction kinetics of nanometric aluminum and iodine pentoxide. J Therm Anal Calorim. 2010;102(2):609–13.

    Article  CAS  Google Scholar 

  9. Pantoya ML, Granier JJ. The effect of slow heating rates on the reaction mechanisms of nano and micron composite thermite reactions. J Therm Anal Calorim. 2006;85(1):37–43.

    Article  CAS  Google Scholar 

  10. Sun J, Pantoya ML, Simon SL. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. Thermochim Acta. 2006;444(2):117–27.

    Article  CAS  Google Scholar 

  11. Wang H, Yan S, Zachariah MR. Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. ACS Appl Mater Interfaces. 2013;5:6797–801.

    Article  CAS  Google Scholar 

  12. Yang Y, Daguo X, Zhang K. Effect of nanostructures on the exothermic reaction and ignition of Al/CuOx based energetic materials. J Mater Sci. 2012;47:1296–305.

    Article  CAS  Google Scholar 

  13. Blobaum KJ, Reiss ME, Plitzko JM, Weihs TP. Deposition and characterization of a self-propagating thermite reaction in a multilayer foil geometry. J Appl Phys. 2003;94:2915–22.

    Article  CAS  Google Scholar 

  14. Blobaum KJ, Reiss ME, Plitzko JM, Weihs TP. Investigating the reaction path and growth kinetics in multilayer foils. J Appl Phys. 2003;94:2923–9.

    Article  CAS  Google Scholar 

  15. Schoenitz M, Ward TS, Dreizin EL. Fully dense nano-composite energetic powders prepared by arrested reactive milling. Proc Combust Inst. 2005;30(2):2071–8.

    Article  Google Scholar 

  16. Umbrajkar SM, Seshadri S, Schoenitz M, Hoffmann VK, Dreizin EL. Aluminum-rich Al–MoO3 nanocomposite powders prepared by arrested reactive milling. J Propuls Power. 2008;24:192–8.

    Article  CAS  Google Scholar 

  17. Kim SH, Zachariah MR. Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv Meter. 2004;16(20):1821–5.

    Article  CAS  Google Scholar 

  18. Sullivan KT, Worsley MA, Kuntz JD, Gash AE. Electrophoretic deposition of binary energetic composites. Combust Flame. 2012;159:2210–8.

    Article  CAS  Google Scholar 

  19. Ciprioti SV, Bollino F, Tranquillo E. Synthesis, thermal behavior and physicochemical characterization of ZrO2/PEG inorganic/organic hybrid materials via sol–gel technique. J Therm Anal Calorim. 2017;130(1):535–40.

    Article  Google Scholar 

  20. Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH Jr, Poco JF. Nanostructured energetic materials using sol–gel methodologies. J Non Cryst Solids. 2001;285:338–45.

    Article  CAS  Google Scholar 

  21. Gao K, Li G, Luo Y, et al. Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites. J Therm Anal Calorim. 2014;118:43–9.

    Article  CAS  Google Scholar 

  22. Shen L, Li G, Luo Y, et al. Preparation and characterization of Al/B/Fe2O3 nanothermites. Sci China Chem. 2014;57(6):797–802.

    Article  CAS  Google Scholar 

  23. Dippong T, Levei EA, Cadar O, et al. Thermal behavior of CoxFe3–xO4/SiO2 nanocomposites obtained by a modified sol–gel method. J Therm Anal Calorim. 2017;128(1):39–52.

    Article  CAS  Google Scholar 

  24. Barhoum A, Van Assche G, Rahier H, et al. Sol–gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. J Therm Anal Calorim. 2017;119:270–6.

    CAS  Google Scholar 

  25. Séverac F, Alphonse P, Estève A, et al. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv Funct Mater. 2012;22:323–9.

    Article  Google Scholar 

  26. Cheng JL, Hng HH, Ng HY, et al. Synthesis and characterization of self-assembled nanoenergetic Al–Fe2O3 thermite system. J Phys Chem Solids. 2010;71:90–4.

    Article  CAS  Google Scholar 

  27. Subramaniam S, Hasan S, Bhattacharya S, et al. Self-assembled nanoenergetic composite. Mater Res Soc Symp Proc. 2006;896:1–6.

    Google Scholar 

  28. Xu Q, Qin H, Yin Z, et al. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chem Eng Sci. 2013;104:330–46.

    Article  CAS  Google Scholar 

  29. Wang H, Jian G, Egan GC, Zacharich MR. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust Flame. 2014;161:2203–8.

    Article  CAS  Google Scholar 

  30. Huwei L, Ruonong F. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Pyrol. 1988;14:163–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the National Natural Science Foundation of China (NSFC51202113) and Central Universities (NUST 2011 YBXM10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wuxi Xie or Yi Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, Y., Huang, H. et al. Preparation and characterization of the Al/Fe2O3/RDX/NC nanocomposites by electrospray. J Therm Anal Calorim 137, 1615–1620 (2019). https://doi.org/10.1007/s10973-019-08067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08067-1

Keywords

Navigation