Skip to main content
Log in

Development and characterization of innovative energetic composites based on nitrotriazolone and nanostructured cellulose nitrates

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In response to the demands for elevated energy levels and enhanced homogeneity in propellant and explosive formulations, new energetic composites based on unmodified and modified nanostructured cellulose nitrate and 3-nitro-2,4-dihydro-3H-l,2,4-triazol-3-one (NTO) were fully scrutinized. Indeed, microcrystalline cellulose nitrate (MCCN)/NTO, and carbamated microcrystalline cellulose nitrate (M3CN)/NTO composites were elaborated using a solvent evaporation method and their characteristics were compared to those of nitrocellulose (NC)/NTO. Experimental findings highlighted that the newly developed energetic composites exhibit favorable features, including a density exceeding 1.775 g/cm3. Moreover, theoretical performance calculations using EXPLO5 version 6.02.06 indicated that the optimal composition resulted in excellent specific impulses and detonation velocities, which increased from 217.5 s and 7910 m/s for NC/NTO to 235.1 s and 8165 m/s for M3CN/NTO. Structural analyses revealed a homogeneous dispersion and embedding of NTO particles within the nitrated cellulosic matrix. In addition, thermo-kinetic results demonstrated that the activation energy of the three designed energetic composites is lower than that of pristine NTO explosive. Therefore, this investigation offers a potential fabrication approach and basic theory for the application of nanostructured cellulose nitrate in advanced high-performance energetic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abdelaziz A, Tarchoun AF, Boukeciat H, Trache D (2022) Insight into the thermodynamic properties of promising energetic HNTO· AN Co-Crystal: heat capacity, combustion energy, and formation enthalpy. Energies 15(18):6722

    Article  CAS  Google Scholar 

  • Abushammala H (2019) A simple method for the quantification of free isocyanates on the surface of cellulose nanocrystals upon carbamation using toluene diisocyanate. Surfaces 2(2):444–454

    Article  CAS  Google Scholar 

  • Agrawal JP, Dodke VS (2021) Some novel high energy materials for improved performance. Z Anorg Allg Chem 647(19):1856–1882

    Article  CAS  Google Scholar 

  • Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305

    Article  CAS  PubMed  Google Scholar 

  • Barnard P, Fouche F, Bezuidenhout H (1997) Less sensitive TNT-based formulations. In: Australasian explosive ordnance symposium (Parari'97), 3rd. Canberra, Australia

  • Becuwe A, Delclos A (1993) Low-sensitivity explosive compounds for low vulnerability warheads. Propellants, Explos, Pyrotech 18(1):1–10

    Article  CAS  Google Scholar 

  • Benhammada A, Trache D, Kesraoui M, Chelouche S (2020a) Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials 10(5):968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhammada A, Trache D, Kesraoui M, Tarchoun AF, Chelouche S, Mezroua A (2020b) Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim Acta 686:178570

    Article  CAS  Google Scholar 

  • Betzler FM, Hartdegen VA, Klapötke TM, Sproll SM (2016) A new energetic binder: glycidyl nitramine polymer. Cent Eur J Energetic Mater 13(2):289–300

    Article  CAS  Google Scholar 

  • Betzler FM, Klapötke TM, Sproll S (2011) Energetic nitrogen-rich polymers based on cellulose. Cent Eur J Energetic Mater 8(3):157–171

    CAS  Google Scholar 

  • Bolotina N, Kirschbaum K, Pinkerton AA (2005) Energetic materials: α-NTO crystallizes as a four-component triclinic twin. Acta Crystallogr B 61(5):577–584

    Article  PubMed  Google Scholar 

  • Born M, Fessard TC, Göttemann L, Klapötke TM, Stierstorfer J, Voggenreiter M (2021) 3, 3-Dinitratooxetane–an important leap towards energetic oxygen-rich monomers and polymers. Chem Commun 57(22):2804–2807

    Article  CAS  Google Scholar 

  • Boukeciat H, Tarchoun AF, Trache D, Abdelaziz A, Ahmed Hamada R, Bouhantala A, Bousstila C, Hanafi S, Dourari M, Klapötke TM (2022) Towards investigating the effect of ammonium nitrate on the characteristics and thermal decomposition behavior of energetic double base NC/DEGDN composite. Materials 15(22):8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukeciat H, Tarchoun AF, Trache D, Abdelaziz A, Meziani R, Klapötke TM (2023) Development and characterization of new energetic composites based on HNTO/AN co-crystal and nitro-cellulosic materials. Polymers 15(7):1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Cao X, Chen Y, Li Q, Wang Y, Wang X, Qin Y, Cao X, Liu J, Shao Z (2021a) Biomimetic-inspired one-step strategy for improvement of interfacial interactions in cellulose nanofibers by modification of the surface of nitramine explosives. Langmuir 37(28):8486–8497

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Cao X, Gao J, He W, Liu J, Wang Y, Zhou X, Shen J, Wang B, He Y (2021b) Nitrated bacterial cellulose-based energetic nanocomposites as propellants and explosives for military applications. ACS Applied Nano Materials 4(2):1906–1915

    Article  CAS  Google Scholar 

  • Dlott D (2006) Thinking big (and small) about energetic materials. Mater Sci Technol 22(4):463–473

    Article  CAS  Google Scholar 

  • Elbasuney S, Fahd A, Mostafa HE, Mostafa SF, Sadek R (2018) Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants. Def Technol 14(1):70–76

    Article  Google Scholar 

  • Feagin TA, Rae PJ (2020) Optical absorption in polycrystalline PETN, RDX, HMX, CL-20 and HNS and its possible effect on exploding bridgewire detonator function. J Energ Mater 38(4):395–405

    Article  CAS  Google Scholar 

  • Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31(1):291–321

    Article  CAS  Google Scholar 

  • Hanafi S, Trache D, He W, Xie W-X, Mezroua A, Yan Q-L (2020) Catalytic effect of 2D-layered energetic hybrid crystals on the thermal decomposition of 3-nitro-2, 4-dihydro-3H-1, 2, 4-triazol-5-one (NTO). Thermochim Acta 692:178747

    Article  CAS  Google Scholar 

  • Harlin A (2019) Cellulose carbamate: production and applications. VTT technical research centre of Finland. https://doi.org/10.32040/2019.978-951-38-8707-0

  • Hermann M (2011) Microstructure of nitrocellulose investigated by X‐ray diffraction. In: International annual conference, Fraunhofer Institut for Chemische Technologie. Karlsruhe, Germany

  • Heuser E (1944) The chemistry of cellulose. John Wiley and Sons, New York

  • Jadhav H, Talawar M, Dhavale D, Asthana S, Krishnamurthy V (2005) Synthesis, characterization and thermolysis of 2, 4-dihydro-2, 4, 5-trinitro-3H-1, 2, 4-triazol-3-one (DTNTO): a new derivative of 3-nitro-1, 2, 4-triazol-5-one (NTO). Indian J Eng Mater Sci 12(5):467–471

  • Ke X, Guo S, Zhang G, Zhou X, Xiao L, Hao G, Wang N, Jiang W (2018) Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films. J Mater Chem A 6(36):17713–17723

    Article  CAS  Google Scholar 

  • Klapötke TM, Krumm B, Widera A (2018) Synthesis and properties of tetranitro-substituted adamantane derivatives. ChemPlusChem 83(1):61–69

    Article  PubMed  Google Scholar 

  • Kondrikov BN, Smirnov S, Minakin A, Doherty RM (2004) Chemical kinetics of the thermal decomposition of NTO. Propellants, Explos, Pyrotech 29(1):27–33

    Article  CAS  Google Scholar 

  • Lewis ML, Lewis IR, Griffiths PR (2005) Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength. Vib Spectrosc 38(1–2):17–28

    Article  CAS  Google Scholar 

  • Li X, Liu X, Cheng Y, Li Y, Mei X, Calorimetry (2014) Thermal decomposition properties of double-base propellant and ammonium perchlorate. J Therm Anal 115(1):887–894

    Article  CAS  Google Scholar 

  • Li Y, Li B, Zhang D, Xie L (2022) Preparation and characterization of a series of high-energy and low-sensitivity composites with different desensitizers. New J Chem 46(11):5218–5233

    Article  CAS  Google Scholar 

  • Luo T, Wang Y, Huang H, Shang F, Song X (2019) An electrospun preparation of the NC/GAP/nano-LLM-105 nanofiber and its properties. Nanomaterials 9(6):854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezroua A, Hamada RA, Brahmine KS, Abdelaziz A, Tarchoun AF, Boukeciat H, Bekhouche S, Bessa W, Benhammada A, Trache D (2022) Unraveling the role of ammonium perchlorate on the thermal decomposition behavior and kinetics of NC/DEGDN energetic composite. Thermochim Acta 716:179305

    Article  CAS  Google Scholar 

  • Miles FD, Milbourn M (2002) The structure of nitrated cellulose. I. J Phys Chem 34(11):2598–2606

    Article  Google Scholar 

  • Morris E, Pulham CR, Morrison CA (2023) Structure and properties of nitrocellulose: approaching 200 years of research. RSC Adv 13(46):32321–32333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muravyev NV, Pivkina AN, Koga N (2019) Critical appraisal of kinetic calculation methods applied to overlapping multistep reactions. Molecules 24(12):2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muravyev NV, Wozniak DR, Piercey DG (2022) Progress and performance of energetic materials: open dataset, tool, and implications for synthesis. J Mater Chem A 10(20):11054–11073

    Article  CAS  Google Scholar 

  • Nikolsky SN, Zlenko DV, Melnikov VP, Stovbun SV (2019) The fibrils untwisting limits the rate of cellulose nitration process. Carbohydr Polym 204:232–237

    Article  CAS  PubMed  Google Scholar 

  • Patil VB, Bělina P, Trzcinski WA, Zeman S (2024) Co-agglomerated crystals of cyclic nitramines with the nitrogen rich 3, 6-bis (1H–1, 2, 3, 4-tetrazol-5-ylamino)-1, 2, 4, 5-tetrazine (BTATz). Chem Eng J 483:149029

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Kohsari I, Zandavar H, ForoutanKoudehi M, Mirsadeghi S (2019) Electrospinning and thermal characterization of nitrocellulose nanofibers containing a composite of diaminofurazan, aluminum nano-powder and iron oxide nanoparticles. Cellulose 26:4405–4415

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS, Calorimetry (2012) Non-isothermal kinetic studies on thermal decomposition of energetic materials: KNF and NTO. J Therm Anal Calorimetry 110(2):857–863

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Sadri M, Rahimi-Nasrabadi M, Shamsipur M, Jabbarzade Y, Khalaki MS, Abdollahi M, Shariatinia Z, Kohsari I, Atifeh SM (2015) Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Calorimetry 119:281–290

    Article  CAS  Google Scholar 

  • Prabhakaran K, Naidu S, Kurian E (1994) XRD, spectroscopic and thermal analysis studies on 3-nitro-1, 2, 4-triazole-5-one (NTO). Thermochim Acta 241:199–212

    Article  CAS  Google Scholar 

  • Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16(4):919–931

    Article  CAS  Google Scholar 

  • Rothgery E, Audette D, Wedlich R, Csejka D (1991) The study of the thermal decomposition of 3-nitro-1, 2, 4-triazol-5-one (NTO) by DSC, TGA-MS, and ARC. Thermochim Acta 185(2):235–243

    Article  CAS  Google Scholar 

  • Sahnoun N, Abdelaziz A, Tarchoun AF, Boukeciat H, Mezroua A, Trache D (2022) Nitrostarch as a promising insensitive energetic biopolymer: synthesis, characterization, and thermal decomposition kinetics. Ind Crops Prod 189:115774

    Article  CAS  Google Scholar 

  • Sbirrazzuoli N (2021) Model-free isothermal and nonisothermal predictions using advanced isoconversional methods. Thermochim Acta 697:178855

    Article  CAS  Google Scholar 

  • Sirach RR, Dave PN (2021) 3-Nitro-1, 2, 4-triazol-5-one (NTO): high explosive insensitive energetic material. Chem Heterocycl Compd 57:720–730

    Article  CAS  Google Scholar 

  • Smith MW, Cliff MD (1999) NTO-based explosive formulations: a technology review. DSTO Aeronautical and Maritime Research Laboratory, Australia

  • Tang Y, Yin Z, Chinnam AK, Staples RJ, JnM S (2020) A duo and a trio of triazoles as very thermostable and insensitive energetic materials. Inorg Chem 59(23):17766–17774

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM (2019) Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int J Biol Macromol 138:837–845

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Krumm B, Khimeche K, Mezroua A (2020) A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: synthesis and characterization. Carbohydr Polym 249:116820

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Krumm B, Kofen M (2021a) Synthesis and characterization of new insensitive and high-energy dense cellulosic biopolymers. Fuel 292:120347

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Selmani A, Saada M, Chelouche S, Mezroua A, Abdelaziz A (2021b) New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: their synthesis, characterization, and non-isothermal decomposition kinetics. New J Chem 45(11):5099–5113

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Slimani K, Be B, Abdelaziz A, Bekhouche S, Bessa W (2022) Valorization of esparto grass cellulosic derivatives for the development of promising energetic azidodeoxy biopolymers: synthesis, characterization and isoconversional thermal kinetic analysis. Propellants, Explos, Pyrotech 47(3):e202100293

    Article  CAS  Google Scholar 

  • Teipel U (2006) Energetic materials: particle processing and characterization. John Wiley & Sons, Hoboken, NJ

  • Trache D, Abdelaziz A, Siouani B (2017) A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorimetry 128(1):335–348

    Article  CAS  Google Scholar 

  • Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan T, Haafiz MM (2016a) Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93:789–804

    Article  CAS  PubMed  Google Scholar 

  • Trache D, Khimeche K, Mezroua A, Benziane M, Calorimetry (2016b) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal 124(3):1485–1496

    Article  CAS  Google Scholar 

  • Trache D, Maggi F, Palmucci I, DeLuca LT (2018) Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorimetry 132:1601–1615

    Article  CAS  Google Scholar 

  • Trache D, Tarchoun AF, Chelouche S, Khimeche K (2019) New insights on the compatibility of nitrocellulose with aniline-based compounds. Propellants, Explos, Pyrotech 44(8):970–979

    Article  CAS  Google Scholar 

  • Urbanski T, Laverton S, Ornaf W (1964) Chemistry and technology of explosives, vol 1. Pergamon Press, Oxford

  • Vara JA, Dave PN (2019) Metal oxide nanoparticles as catalyst for thermal behavior of AN based composite solid propellant. Chem Phys Lett 730:600–607

    Article  CAS  Google Scholar 

  • Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes. Springer, Cham. https://doi.org/10.1007/978-3-319-14175-6

  • Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19

    Article  CAS  Google Scholar 

  • Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, Sbirrazzuoli N (2020) ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597

    Article  CAS  Google Scholar 

  • Wang H, Kline DJ, Rehwoldt M, Wu T, Zhao W, Wang X, Zachariah MR (2019) Architecture can significantly alter the energy release rate from nanocomposite energetics. ACS Appl Polym Mater 1(5):982–989

    Article  CAS  Google Scholar 

  • Wang Y, Song X, Song D, Liang L, An C, Wang J (2016) Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J Hazard Mater 312:73–83

    Article  CAS  PubMed  Google Scholar 

  • Warshel A, Papazyan A, Kollman PA (1995) On low-barrier hydrogen bonds and enzyme catalysis. Science 269(5220):102–106

    Article  CAS  PubMed  Google Scholar 

  • Wen M, Chang X, Xu Y, Chen D, Chu QJPCCP (2024) Determining the mechanical and decomposition properties of high energetic materials (α-RDX, β-HMX, and ε-CL-20) using a neural network potential. Phys Chem Chem Phys 26(13):9984–9997

  • Yan Q-L, DeLuca LTJEMF (2021) Urgent demand for high energy insensitive propellants with controllable burn rates. Energetic Mater Front 2(1):1–2

  • Yang F-F, Shao Z, Li N-K, Wang F-J, Zhang Y (2011) A novel cellulose-based azide energetic material: 1-azido-2-hydroxypropyl cellulose ether. J Energy Mater 29(3):241–260

    Article  CAS  Google Scholar 

  • Yang G, Nie F, Li J, Guo Q, Qiao Z (2007) Preparation and characterization of nano-NTO explosive. J Energy Mater 25(1):35–47

    Article  CAS  Google Scholar 

  • Yang Z, Ding L, Wu P, Liu Y, Nie F, Huang F (2015) Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity. Chem Eng J 268:60–66

    Article  CAS  Google Scholar 

  • Zhou X, Torabi M, Lu J, Shen R, Zhang K, Interfaces (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6(5):3058–3074

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that they have received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

H.B.: Conceptualization, Methodology, Resources, Investigation, Data treatment, Writing-Original Draft. A.F.T., and D.T.: Supervision, Conceptualization, Review, Editing. A.A., A.B., and C.B.: Resources, Investigation, Data treatment. T.M.K., and S.T.: Review & Editing the manuscript draft. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ahmed Fouzi Tarchoun, Djalal Trache or Sourbh Thakur.

Ethics declarations

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

All authors state that they adhere to the Ethical Responsibilities of Authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukeciat, H., Tarchoun, A.F., Trache, D. et al. Development and characterization of innovative energetic composites based on nitrotriazolone and nanostructured cellulose nitrates. Cellulose (2024). https://doi.org/10.1007/s10570-024-05931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10570-024-05931-8

Keywords

Navigation