Skip to main content
Log in

Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of agricultural wastes for energy conversion has been widely studied as renewable and carbon neutral energy sources. This paper aims to evaluate the energetic potential of six agricultural wastes—sugarcane bagasse, bean pods, corn stover, pineapple crown leaves, white cotton and natural coloured cotton stalks, through their characterization and pyrolysis kinetic study. The energetic potential of biomasses was evaluated by ultimate and proximate analysis, higher heating value (HHV), apparent density, and kinetic parameters of conversion and apparent activation energy (Ea) determined by Model-Free kinetics though thermogravimetric analysis data. The results indicate energetic density for dry basis biomasses, such as moisture content less than 7%, volatiles higher than 77% and moderate ash content. The HHVs were higher for the biomass with low O:C ratio. The Ea values increased with increasing O:C ratio and were also influenced by the biomass ash content. Among the studied biomasses, PCL are less explored for energy application, although the results confirm its potential for application in thermochemical processes such as pyrolysis or combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  2. Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuels. 2004;18:590–8.

    Article  CAS  Google Scholar 

  3. Suriapparao DV, Vinu R. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste Biomass Valoriz. 2018;9:465–77.

    Article  CAS  Google Scholar 

  4. Osorio J, Chejne F. Bio-oil production in fluidized bed reactor at pilot plant from sugarcane bagasse by catalytic fast pyrolysis. Waste Biomass Valoriz. 2018;9:1877–2641.

    Google Scholar 

  5. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–89.

    Article  CAS  Google Scholar 

  6. Madhu P, Livingston TS, Kanagasabapathy H. Flash pyrolysis of lemon grass (Cymbopogon flexuosus) for biooil production in an electrically heated fluidized bed reactor. Waste Biomass Valoriz. 2018;9:1037–46.

    Article  CAS  Google Scholar 

  7. Zhang R, Wang H, You Z, Jiang X, Yang X. Optimization of bio-asphalt using bio-oil and distilled water. J Clean Prod. 2017;165:281–9.

    Article  CAS  Google Scholar 

  8. Gil-Lalaguna N, Bautista A, Gonzalo A, Sánchez JL, Arauzo J. Obtaining biodiesel antioxidant additives by hydrothermal treatment of lignocellulosic bio-oil. Fuel Proc Technol. 2017;166:1–7.

    Article  CAS  Google Scholar 

  9. Arazoa RO, Lunab MDG, Capareda SC. Assessing biodiesel production from sewage sludge-derived bio-oil. Biocatal Agric Biotechnol. 2017;10:189–96.

    Article  Google Scholar 

  10. Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático de Produção Agrícola. Rio de Janeiro. 2017;30:1–81.

    Google Scholar 

  11. Capunitan JA, Capareda SC. Assessing the potential for biofuel production of corn stover pyrolysis using a pressurized batch reactor. Fuel. 2012;95:563–72.

    Article  CAS  Google Scholar 

  12. Cunha JA, Pereira MM, Valente LMM, Piscina PR, Homs N, Santos MRL. Waste biomass to liquids: low temperature conversion of sugarcane bagasse to bio-oil. Biomass Bioenergy. 2011;35:2106–16.

    Article  CAS  Google Scholar 

  13. Qian Y, Zhang J, Wang J. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Bioresour Technol. 2014;174:95–102.

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. J Anal Appl Pyrolysis. 2014;128:162–9.

    CAS  Google Scholar 

  15. Huang Y, Chiueh P, Kuan W, Lo S. Microwave pyrolysis of rice straw: products, mechanism, and kinetics. Bioresour Technol. 2013;142:620–4.

    Article  CAS  PubMed  Google Scholar 

  16. Ramajo-Escalera B, Espina A, García JR, Sosa-Arnao JH, Nebra SA. Model-free kinetics applied to sugarcane bagasse combustion. Thermochim Acta. 2006;448:111–6.

    Article  CAS  Google Scholar 

  17. Aboyade AO, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, Görgens JF. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim Acta. 2011;517:81–9.

    Article  CAS  Google Scholar 

  18. Braga RM, Melo DMA, Aquino FM, Freitas JCO, Melo MAF, Barros JMF, Fontes MSB. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115:1915–20.

    Article  CAS  Google Scholar 

  19. Braga RM, Costa TR, Freitas JCO, Barros JMF, Melo DMA, Melo MAF. Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim. 2014;117:1341–8.

    Article  CAS  Google Scholar 

  20. Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol. 2018;251:63–74.

    Article  CAS  PubMed  Google Scholar 

  21. Saad AE, Mohamed EM. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valoriz. 2015;6:401–15.

    Article  CAS  Google Scholar 

  22. Saldarriga JF, Aguado R, Pablos A, Amutio M, Olazar M, Bilbao J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel. 2015;140:744–51.

    Article  CAS  Google Scholar 

  23. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energy Rev. 2018;82:2705–15.

    Article  CAS  Google Scholar 

  24. Varma AK, Mondal P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim. 2016;124:487–97.

    Article  CAS  Google Scholar 

  25. ASTM Standard E 871-82. Standard test method for moisture analysis of particulate wood fuels, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2006.

  26. ASTM Standard 1755-01. Standard test method for ash in biomass, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2007.

  27. ASTM Standard E 872-82. Standard test method for volatile matter in the analysis of particulate wood fuels, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2006.

  28. Guozhan J, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta. 2010;498:61–6.

    Article  CAS  Google Scholar 

  29. Vyazovkin S. Model-Free kinetics Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;1:45–51.

    Article  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popecsu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  31. Aquino FM, Melo DMA, Santiago RC, Melo MAF, Martinelli AE, Freitas JCO, Araújo LCB. Thermal decomposition kinetics of PrMO3 (M=Ni or Co) ceramic materials via thermogravimetry. J Therm Anal Calorim. 2011;104:701–5.

    Article  CAS  Google Scholar 

  32. Serapiglia MJ, Mullen CA, Boateng AA, Cortese LM, Bonos SA, Hoffman L. Evaluation of the impact of compositional differences in switchgrass genotypes on pyrolysis product yield. Ind Crops Prod. 2015;74:957–68.

    Article  CAS  Google Scholar 

  33. García R, Pizarro C, Lavín AG, Bueno JL. Characterization of Spanish biomass wastes for energy use. Bioresour Technol. 2012;103:249–58.

    Article  CAS  PubMed  Google Scholar 

  34. Braga RM, Queiroga TS, Calixto GQ, Almeida HN, Melo DMA, Melo MAF, Freitas JCO, Curbelo FDS. The energetic characterization of pineapple crown leaves. Environ Sci Pollut Res. 2015;22:18987–93.

    Article  CAS  Google Scholar 

  35. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33.

    Article  CAS  Google Scholar 

  36. Morin M, Pécate S, Hemati M, Kara Y. Pyrolysis of biomass in a batch fluidized bed reactor: effect of the pyrolysis conditions and the nature of the biomass on the physicochemical properties and the reactivity of char. J Anal Appl Pyrolysis. 2016;122:511–23.

    Article  CAS  Google Scholar 

  37. Yildiz G, Ronsse F, Venderbosch R, Duren RV, Kersten SRA, Prins W. Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl Catal B Environ. 2015;168:203–11.

    Article  CAS  Google Scholar 

  38. Black J. Cost and performance baseline for fossil energy plants, volume 1: bituminous coal and natural gas to electricity. Washington, DC (USA): National Energy Technology Laboratory; 2010.

  39. Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag. 2013;76:1073–82.

    Article  CAS  Google Scholar 

  40. Wenhan C, Jun L, Leo L. Study on the ignition behavior and kinetics of combustion of biomass. Energy Procedia. 2017;142:136–41.

    Article  CAS  Google Scholar 

  41. Zhezi Z, Mingming Z, Dongke Z. Pyrolysis characteristics of cellulose isolated from selected biomass feedstocks using a thermogravimetric analyser. Energy Procedia. 2017;142:636–41.

    Article  CAS  Google Scholar 

  42. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Angelos A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis. 2014;1051:43–150.

    Google Scholar 

  43. Bakar MSA, Titiloye JO. Catalytic pyrolysis of rice husk for bio-oil production. J Anal Appl Pyrolysis. 2013;103:362–8.

    Article  CAS  Google Scholar 

  44. Quan C, Gao N, Song Q. Pyrolysis of biomass components in a TGA and fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J Anal Appl Pyrolysis. 2016;121:84–92.

    Article  CAS  Google Scholar 

  45. Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.

    Article  CAS  Google Scholar 

  46. Morais LC, Maia AAD, Guandique MEG, Rosa AH. Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim. 2017;129:1813–22.

    Article  CAS  Google Scholar 

  47. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol. 2016;219:510–20.

    Article  CAS  PubMed  Google Scholar 

  48. Rocha EPA, Sermyagina E, Vakkilainen E, Colodette JL, Oliveira IM, Cardoso M. Kinetics of pyrolysis of some biomasses widely available in Brazil. J Therm Anal Calorim. 2017;130:1445–54.

    Article  CAS  Google Scholar 

  49. Brown TL, Lemay HE, Bursten BE, Murphy CJ, Woodward PM. Chemistry: the central science. 12th ed. New Jersey: Prentice Hall; 2012.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support, Central Analítica/NUPPRAR/UFRN and LabTam/NUPPRAR/UFRN for the facilities, and Estivas Louis sugar cane company for sugar bagasse samples and EMBRAPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata M. Braga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.E., Calixto, G.Q., de Almeida, C.C. et al. Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes. J Therm Anal Calorim 137, 1635–1643 (2019). https://doi.org/10.1007/s10973-019-08048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08048-4

Keywords

Navigation