Skip to main content
Log in

Ignition and combustion characteristics and agglomerate evolution mechanism of aluminum in nAl/JP-10 nanofluid fuel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ignition and combustion processes of concentrated nAl/JP-10 nanofluid fuel were studied by using a CO2 laser ignition system with online diagnosis, intermediate sampling, and offline analysis. The energy release properties of aluminum (Al) nanoparticles in droplets and the influence of oxygen content on agglomerate evolution were studied. The phase separation of liquid fuel and Al nanoparticles occurs during the combustion process of concentrated nAl/JP-10 nanofluid. The burning forms of Al nanoparticles within the droplet include local, splash out, and agglomerate burning. Among them, agglomerate burning is the primary form of energy release. During the combustion process, Al particles gradually form an Al agglomerate, and the oxidation reaction of Al nanoparticles mainly occurs after the diffusion flame disappears. Oxygen content has a significant effect on the agglomerate burning of Al nanoparticles. When oxygen content is > 10%, the Al particles are successfully ignited. When oxygen content reaches 50%, a deflagration of the agglomerate occurs, and the Al particles rapidly oxidize to completely release heat and form a dense alumina sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Glotov OG, Yagodnikov DA, Vorob’Ev VS, Zarko VE, Simonenko VN. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant II Experimental studies of agglomeration. Combust Explos Shock. 2007;43(3):320–33.

    Article  Google Scholar 

  2. Brooks KP, Beckstead MW. Dynamics of aluminum combustion. J Propuls Power. 2012;11(4):769–80.

    Article  Google Scholar 

  3. Ao W, Liu X, Rezaiguia H, Liu H, Wang Z, Liu P. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: experiments and modeling. Acta Astronaut. 2017;136:219–29.

    Article  CAS  Google Scholar 

  4. Kumar AS, Rao VB, et al. Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications. Propellants Explos Pyrotech. 2010;35(4):359–64.

    Article  CAS  Google Scholar 

  5. Feng Y, Xia Z, Huang L, Yan X. Experimental investigation on the combustion characteristics of aluminum in air. Acta Astronaut. 2016;129:1–7.

    Article  CAS  Google Scholar 

  6. Sundaram DS, Puri P, Yang V. A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combust Flame. 2016;169:94–109.

    Article  CAS  Google Scholar 

  7. Xin LI, Zhao FQ, Hao HX, Yang L, Si-Yu XU, Yao EG, et al. Research on ignition and combustion properties of different micro/nano-aluminum powders. Acta Armamentarii. 2014;35(5):640–7.

    Google Scholar 

  8. Mench MM, Kuo KK, Yeh CL, Lu YC. Comparison of thermal behavior of regular and ultra-fine aluminum powders (alex) made from plasma explosion process. Combust Sci Technol. 1998;135(1–6):269–92.

    Article  CAS  Google Scholar 

  9. Tepper F, Kaledin L. Combustion characteristics of kerosene containing Alex® nano-aluminum. Int J Energ Mater Chem Propuls. 2002;5(1–6):195–205.

    Google Scholar 

  10. Dong MK, Baek SW, Yoon J. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure. Combust Flame. 2016;173:106–13.

    Article  CAS  Google Scholar 

  11. AIAA, editor. Ignition of a liquid hydrocarbon containing nano-sized aluminum using an aerosol shock tube. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition; 2013.

  12. Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett. 2008;8(5):1410–6.

    Article  CAS  PubMed  Google Scholar 

  13. Xiutianfeng E, Pan L, Wang F, Wang L, Zhang X, Zou JJ. Al-nanoparticle-containing nanofluid fuel: synthesis, stability, properties, and propulsion performance. Ind Eng Chem Res. 2016;55(10):2738–45.

    Article  CAS  Google Scholar 

  14. Gan Y, Li Q. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust Flame. 2011;158(2):354–68.

    Article  CAS  Google Scholar 

  15. Gan Y, Yi SL, Li Q. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust Flame. 2012;159(4):1732–40.

    Article  CAS  Google Scholar 

  16. Gan Y, Qiao L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections. Int J Heat Mass Trans. 2011;54(23):4913–22.

    Article  CAS  Google Scholar 

  17. Javed I, Baek SW, Waheed K. Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures. Combust Flame. 2013;160(1):170–83.

    Article  CAS  Google Scholar 

  18. Miglani A, Basu S. Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. J Heat Trans. 2015;137(10):102001.

    Article  CAS  Google Scholar 

  19. Zhu Y, Yuasa S. Effects of oxygen concentration on combustion of aluminum in oxygen/nitrogen mixture streams. Combust Flame. 1998;115(3):327–34.

    Article  CAS  Google Scholar 

  20. Sun Y, Sun R, Zhu B, Wu Y, Wang Q, Han W. Combustion characteristics of nanoaluminum cloud in different atmospheres. Ind Eng Chem Res. 2017;57(1):129–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51876187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.Z., Chen, B.H., Wu, T.T. et al. Ignition and combustion characteristics and agglomerate evolution mechanism of aluminum in nAl/JP-10 nanofluid fuel. J Therm Anal Calorim 137, 1369–1379 (2019). https://doi.org/10.1007/s10973-019-08039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08039-5

Keywords

Navigation