Skip to main content
Log in

Ignition and combustion of pyrotechnic compositions based on micro- and nanoparticles of aluminum diboride in air flow in a two-zone combustion chamber

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the experimental study of ignition and combustion of micro- and nanoparticles of aluminum diboride as part of pyrotechnic energy-saturated compositions in a gas generator with an air afterburner chamber and the thermodynamic calculations of combustion of pyrotechnic compositions based on aluminum diboride in air. The discharge of the combustion products from the afterburner chamber is recorded on video. It is shown that replacing micron aluminum diboride by powdered diboride with a mass-average diameter of particles equal to ≈270 nm in the pyrotechnic composition and increasing the pressure in the afterburner chamber cause the combustion efficiency in air to increase by 5–20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solid Propellant Rocket Research, Vol. 1. Ed. by M. Summerfield (Academic Press, 1960).

  2. Heterogeneous Combustion, Eds. by H. G. Wolfhard, I. Glassman, and L. Green (New York, London, 1964).

  3. P. F. Pokhil, A. F. Belyaev, Yu. B. Frolov, V. S. Logachaev, and A. I. Korotkov, Combustion Powdered Metals in Active Media (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  4. D. A. Yagodnikov, Ignition and Combustion of Powdered Metals (Izd. Mosk. Gos. Tekh. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  5. Combustion of Boron-Based Solid Propellants and Solid Fuels, Eds. by K. K. Kuo and R. Pein (CRC Press, Boca Raton, 1993).

  6. Chemical Encyclopedic Dictionary, by Ed. I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1983) [in Russian].

  7. L. A. Elshina, V. Ya. Kudyakov, and N. T. Molchanova, “High-Temperature Synthesis of Aluminum Diboride of Chloride Melt Containing B4C,” Rasplavy, No. 6, 73–79 (2007).

    Google Scholar 

  8. V. Rosenband and A. Gany, “Thermal Explosion Synthesis of a Magnesium Diboride Powder,” Fiz. Goreniya Vzryva 50 6, 36–45 (2014) [Combust., Expl., Shock Waves 50 6, 653–657 (2014)].

    Google Scholar 

  9. T. A. Yakovleva, S. A. Kiro, A. N. Kiro, et al., “Combustion of Metal Diboride Particles (Titanium or Aluminum) in the Flame of a Gas Burner,” in Macroscopic Kinetics and Chemical and Magnetic Gas Dynamics, Thesis of Report of the III All-Union School Seminar (Tomsk, 1991), Vol. 2, pp. 43–44.

    Google Scholar 

  10. D. A. Yagodnikov, A. V. Voronetskii, D. Yu. Devyatukha, et al., “The Study of Combustion Processes and the X-ray Analysis of Combustion Products of Pyrotechnic Compositions Based on Nano- and Ultrafine Aluminum Diboride,” in Proc. of the XIV Symp. on Combustion and Explosion (Chernogolovka, 2008), p. 202.

    Google Scholar 

  11. A. A. Gromov, T. A. Khabas, and A. P. Il’in, et al., Combustion of Metal Nanopowders (Del’taplan, Tomsk, 2008) [in Russian].

    Google Scholar 

  12. L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi, and V. A. Babuk, “Burning of Nano-Aluminized Composite Rocket Propellants,” Fiz. Goreniya Vzryva 41 6, 80–94 (2014) [Combust., Expl., Shock Waves 41 6, 680–692 (2014)].

    Google Scholar 

  13. M. K. Berner, V. E. Zarko, and M. B. Talawar, “Nanoparticles of Energetic Materials: Synthesis and Properties (Review),” Fiz. Goreniya Vzryva 49 6, 3–30 (2013) [Combust., Expl., Shock Waves 49 6, 625–647 (2013)].

    Google Scholar 

  14. G. Young, K. Sullivan, M. R. Zachariah, and K. Yu, “Combustion Characteristics of Boron Nanoparticles,” Combust. Flame, 156, 322–333 (2009).

    Article  Google Scholar 

  15. O. G. Glotov, V. E. Zarko, and M. W. Beckstead, “Agglomerate and Oxide Particles Generated in Combustion of Alex Containing Solid Propellants,” in Energetic Materials. Analysis, Diagnostics and Testing: 31th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2000, pp. 130-1–130-14.

    Google Scholar 

  16. A. Dokhan, E. W. Price, R. K. Sigmant, and J. M. Seitzman, “The Effects of All Particle Size on the Burning Rate and Residual Oxide in Aluminum Propellant,” AIAA Paper No. 2001–3581 (2001).

    Google Scholar 

  17. V. N. Emel’yanov, V. Yu. Meleshko, V. I. Sarab’ev, et al., “Ways to Improve the Efficiency of Finely Dispersed Components in Energetic Condensed Systems,” in Modern Problems of Technical Chemistry, Proc. of the Scientific Eng. Conf. (Kazan, 2009), pp. 128–135.

    Google Scholar 

  18. G. I. Pavlovets, N. K. Egorov, S. I. Malashin, et al., “A Method for Producing Ultrafine Powder and a Device for Its Implementation,” RF Patent No. 2068400, MKI2 7 V 82 V 3/00, No. 345909; Filed on 02.12.1996; Publ. 10.28.1996, NKI 78-706.

  19. B. G. Trusov, “Software System for the Modeling of Phase and Chemical Equilibria at High Temperatures,” Inzh. Zh. Nauka Innov., No. 1, 21 (2012); DOI: 18698/2308-6033-2012-1-31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Yagodnikov.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 3, pp. 51–58, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagodnikov, D.A., Voronetskii, A.V. & Sarab’ev, V.I. Ignition and combustion of pyrotechnic compositions based on micro- and nanoparticles of aluminum diboride in air flow in a two-zone combustion chamber. Combust Explos Shock Waves 52, 300–306 (2016). https://doi.org/10.1134/S0010508216030072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216030072

Keywords

Navigation