Skip to main content
Log in

Non-isothermal crystallization kinetics of poly(3-hydroxybutyrate)/EVA 80 blends enhanced by NH4Cl as a nucleating agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization kinetics of poly(3-hydroxybutyrate) (PHB), PHB/NH4Cl composites, PHB/ethylene-vinyl acetate (EVA 80) blends and PHB/EVA 80/1 mass% NH4Cl blends were studied under non-isothermal conditions. The modified Avrami equation and the MO approach were found to successfully describe the non-isothermal crystallization process. It was found that the inverse half time of crystallization and the values of Avrami rate constant, K, of PHB increased with decreasing EVA 80 content, increasing cooling rate and the addition of NH4Cl. Moreover, the crystallization mechanism remains unchanged in spite of the EVA 80 content and the presence of NH4Cl. Furthermore, the effective energy barrier of the non-isothermal crystallization process, EX(t), was evaluated with the isoconversional methods of Friedman. The EX(t) values of PHB/NH4Cl composites are much lower than those of pure PHB. Moreover, EX(t) values of PHB in PHB/EVA 80/1 mass% NH4Cl increase with increasing EVA content. A large number of small PHB spherulites were observed by polarized optical microscopy in the presence of NH4Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chanprateep S. Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng. 2010;110:621–32.

    Article  CAS  PubMed  Google Scholar 

  2. Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater. 2013;2:8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garrison T, Murawski A, Quirino R. Bio-based polymers with potential for biodegradability. Polymers. 2016;8:262–84.

    Article  CAS  PubMed Central  Google Scholar 

  4. Mitomo H, Barham PJ, Keller A. Crystallization and morphology of poly(β-hydroxybutyrate) and its copolymer. Polym J. 1987;19:1241–53.

    Article  CAS  Google Scholar 

  5. Barham PJ, Barker P, Organ SJ. Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Lett. 1992;103:280–98.

    Article  Google Scholar 

  6. Barker PA, Barham PJ, Martinez-Salazar J. Effect of crystallization temperature on the cocrystallization of hydroxybutyrate/hydroxyvalerate copolymers. Polymer. 1997;38:913–9.

    Article  CAS  Google Scholar 

  7. Organ SJ, Li J, Terry AE, Barham PJ. Morphology and growth of a hydroxybutyrate oligomer with 24 repeat units. Polymer. 2006;47:5513–22.

    Article  CAS  Google Scholar 

  8. Janigová I, Lacík I, Chodák I. Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym Degrad Stab. 2002;77:35–41.

    Article  Google Scholar 

  9. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett. 2014;8:791–808.

    Article  CAS  Google Scholar 

  10. Liu H, Gao Z, Hu X, Wang Z, Su T, Yang L, et al. Blending modification of PHBV/PCL and its biodegradation by pseudomonas mendocina. J Polym Environ. 2017;25:156–64.

    Article  CAS  Google Scholar 

  11. Jayanth D, Kumar PS, Nayak GC, Kumar JS, Pal SK, Rajasekar R. A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ. 2018;26:838–65.

    Article  CAS  Google Scholar 

  12. Kai W, He Y, Inoue Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym Int. 2005;54:780–9.

    Article  CAS  Google Scholar 

  13. Puente JAS, Esposito A, Chivrac F, Dargent E. Effects of size and specific surface area of boron nitride particles on the crystallization of bacterial poly(3-hydroxybutyrate- co -3-hydroxyvalerate). Macromol Symp. 2013;328:8–19.

    Article  CAS  Google Scholar 

  14. Puente JAS, Esposito A, Chivrac F, Dargent E. Effect of boron nitride as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate). J Appl Polym Sci. 2013;128:2586–94.

    Article  CAS  Google Scholar 

  15. Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ. Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci. 2002;86:2145–52.

    Article  CAS  Google Scholar 

  16. Barham PJ. Nucleation behaviour of poly-3-hydroxy-butyrate. J Mater Sci. 1984;19:3826–34.

    Article  CAS  Google Scholar 

  17. Withey RE, Hay JN. The effect of seeding on the crystallisation of poly(hydroxybutyrate), and co-poly(hydroxybutyrate-co-valerate). Polymer. 1999;40:5147–52.

    Article  CAS  Google Scholar 

  18. Qian J, Zhu L, Zhang J, Whitehouse RS. Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates). J Polym Sci Part B: Polym Phys. 2007;45:1564–77.

    Article  CAS  Google Scholar 

  19. Shuai X, Porbeni FE, Wei M, Bullions T, Tonelli AE. Formation of inclusion complexes of poly(3-hydroxybutyrate)s with cyclodextrins. 1. Immobilization of atactic poly(R, S -3-hydroxybutyrate) and miscibility enhancement between poly(R, S -3-hydroxybutyrate) and poly(ε-caprolactone). Macromolecules. 2002;35:3126–32.

    Article  CAS  Google Scholar 

  20. He Y, Inoue Y. α-cyclodextrin-enhanced crystallization of poly(3-hydroxybutyrate). Biomacromol. 2003;4:1865–7.

    Article  CAS  Google Scholar 

  21. Organ SJ, Barham PJ. Nucleation of poly(hydroxy butyrate) by epitaxy on nitrogen-containing compounds. J Mater Sci. 1992;27:3239–42.

    Article  CAS  Google Scholar 

  22. van der Walle GAM, de Koning GJM, Weusthuis RA, Eggink G. Properties, modifications and applications of biopolyesters. Adv Biochem Eng Biotechnol. 2001. p. 263–91.

  23. Iulianelli GCV, David GDS, dos Santos TN, Sebastião PJO, Tavares MIB. Influence of TiO2 nanoparticle on the thermal, morphological and molecular characteristics of PHB matrix. Polym Test. 2018;65:156–62.

    Article  CAS  Google Scholar 

  24. dos Santos Silva ID, Jaques NG, Neto MDCB, Agrawal P, Ries A, Wellen RMR. Melting and crystallization of PHB/ZnO compounds: effect of heating and cooling cycles on phase transition. J Therm Anal Calorim. 2018;132:571–80.

    Article  CAS  Google Scholar 

  25. Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng L-S, et al. Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab. 2013;98:1439–49.

    Article  CAS  Google Scholar 

  26. Chen J, Wu D, Tam KC, Pan K, Zheng Z. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym. 2017;157:1821–9. https://doi.org/10.1016/j.carbpol.2016.11.071.

    Article  CAS  PubMed  Google Scholar 

  27. Mook Choi W, Wan Kim T, Ok Park O, Keun Chang Y, Woo Lee J. Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay nanocomposites. J Appl Polym Sci. 2003;90:525–9.

    Article  CAS  Google Scholar 

  28. Czerniecka-Kubicka A, Frącz W, Jasiorski M, Błażejewski W, Pilch-Pitera B, Pyda M. Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. J Therm Anal Calorim. 2017;128:1513–26.

    Article  CAS  Google Scholar 

  29. El-Hadi AM. Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites. Polym Bull. 2014;71:1449–70.

    Article  CAS  Google Scholar 

  30. Ning Z, Xin S, Wu X, Xu K, Han C, Dong L. Crystallization behavior, mechanical properties, and enzymatic degradation of biosourced poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene nanocomposites. J Therm Anal Calorim. 2016;124:1705–15.

    Article  CAS  Google Scholar 

  31. Scalioni LV, Gutiérrez MC, Felisberti MI. Green composites of poly(3-hydroxybutyrate) and curaua fibers: morphology and physical, thermal, and mechanical properties. J Appl Polym Sci. 2017;134:44676.

    Article  CAS  Google Scholar 

  32. Vitorino MBC, Cipriano PB, Wellen RMR, Canedo EL, Carvalho LH. Nonisothermal melt crystallization of PHB/babassu compounds. J Therm Anal Calorim. 2016;126:755–69.

    Article  CAS  Google Scholar 

  33. Xu P, Feng Y, Ma P, Chen Y, Dong W, Chen M. Crystallization behaviours of bacterially synthesized poly(hydroxyalkanoate)s in the presence of oxalamide compounds with different configurations. Int J Biol Macromol. 2017;104:624–30.

    Article  CAS  PubMed  Google Scholar 

  34. Qiu Z, Yang W, Ikehara T, Nishi T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone). Polymer. 2005;46:11814–9.

    Article  CAS  Google Scholar 

  35. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.

    Article  CAS  Google Scholar 

  36. Mekonnen T, Mussone P, Khalil H, Bressler D. Progress in bio-based plastics and plasticizing modifications. J Mater Chem A. 2013;1:13379.

    Article  CAS  Google Scholar 

  37. Pan Y, Farmahini-Farahani M, O’Hearn P, Xiao H, Ocampo H. An overview of bio-based polymers for packaging materials. J Bioresour Bioprod. 2016;1:106–13.

    Google Scholar 

  38. Ma P, Cai X, Wang W, Duan F, Shi D, Lemstra PJ. Crystallization behavior of partially crosslinked poly(β-hydroxyalkonates)/poly(butylene succinate) blends. J Appl Polym Sci. 2014;131:1–8.

    Article  CAS  Google Scholar 

  39. Dufresne A, Vincendon M. Poly(3-hydroxybutyrate) and poly(3-hydroxyoctanoate) blends: morphology and mechanical behavior. Macromolecules. 2000;33:2998–3008.

    Article  CAS  Google Scholar 

  40. Pachekoski WM, Agnelli JAM, Belem LP. Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing. Mater Res. 2009;12:159–64.

    Article  CAS  Google Scholar 

  41. Gassner F, Owen A. On the physical properties of BIOPOL/ethylene-vinyl acetate blends. Polymer. 1992;33:2508–12.

    Article  CAS  Google Scholar 

  42. Yoon J-S, Oh S-H, Kim M-N. Compatibility of poly(3-hydroxybutyrate)/poly(ethylene-co-vinyl acetate) blends. Polymer. 1998;39:2479–87.

    Article  CAS  Google Scholar 

  43. El-Taweel SH, Stoll B, Schick C. Crystallization kinetics and miscibility of blends of polyhydroxybutyrate (PHB) with ethylene vinyl acetate copolymers (EVA). E-Polymers. 2011;11:1–16.

    Article  Google Scholar 

  44. El-Taweel SH, Khater M. Mechanical and thermal behavior of blends of poly(hydroxybutyrate-co-hydroxyvalerate) with ethylene vinyl acetate copolymer. J Macromol Sci Part B. 2015;54:1225–32.

    Article  CAS  Google Scholar 

  45. You J-W, Chiu H-J, Don T-M. Spherulitic morphology and crystallization kinetics of melt-miscible blends of poly(3-hydroxybutyrate) with low molecular weight poly(ethylene oxide). Polymer. 2003;44:4355–62.

    Article  CAS  Google Scholar 

  46. Prud’homme RE. Crystallization and morphology of ultrathin films of homopolymers and polymer blends. Prog Polym Sci. 2016;54–55:214–31.

    Article  CAS  Google Scholar 

  47. Wellen RMR, Canedo EL. Nonisothermal melt and cold crystallization kinetics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)/carbon black compounds. Evaluation of Pseudo-Avrami, Ozawa, and Mo models. J Mater Res. 2016;31:729–39.

    Article  CAS  Google Scholar 

  48. Vyazovkin S. Isoconversional kinetics of polymers: the decade past. Macromol Rapid Commun. 2017;38:1600615.

    Article  CAS  Google Scholar 

  49. Höhne GWH, Hemminger WF, Flammersheim H-J. Calibration of differential scanning calorimeters. Differ scanning calorim [internet]. Berlin: Springer; 2003. p. 65–114.

    Google Scholar 

  50. Ha C. Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci. 2002;27:759–809.

    Article  CAS  Google Scholar 

  51. Chiu H. Miscibility and crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(vinyl acetate) blends. J Appl Polym Sci. 2006;100:980–8.

    Article  CAS  Google Scholar 

  52. Li H, Lu X, Yang H, Hu J. Non-isothermal crystallization of P(3HB-co-4HB)/PLA blends. J Therm Anal Calorim. 2015;122:817–29.

    Article  CAS  Google Scholar 

  53. Xu J, Ye H, Zhang S, Guo B. Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review. Crystals. 2017;7:241.

    Article  CAS  Google Scholar 

  54. Škrbić Z, Divjaković V. Temperature influence on changes of parameters of the unit cell of biopolymer PHB. Polymer. 1996;37:505–7.

    Article  Google Scholar 

  55. Galego N, Rozsa C, Sánchez R, Fung J, Vázquez A, Santo Tomás J. Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test. 2000;19:485–92.

    Article  CAS  Google Scholar 

  56. Gunaratne LMWK, Shanks RA. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polym J. 2005;41:2980–8.

    Article  CAS  Google Scholar 

  57. He Y, Inoue Y. Effect of α-cyclodextrin on the crystallization of poly (3-hydroxybutyrate). J Polym Sci Part B: Polym Phys. 2004;42:3461–9.

    Article  CAS  Google Scholar 

  58. Weihua K, He Y, Asakawa N, Inoue Y. Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci. 2004;94:2466–74.

    Article  CAS  Google Scholar 

  59. Wang KY, Cao F. Effect of organoclay on thermal degradation and crystalline morphology properties of biodegradable PHBV. Adv Mater Res. 2013;791–793:256–9.

    Google Scholar 

  60. Naffakh M, Marco C, Ellis G, Cohen SR, Laikhtman A, Rapoport L, et al. Novel poly(3-hydroxybutyrate) nanocomposites containing WS2 inorganic nanotubes with improved thermal, mechanical and tribological properties. Mater Chem Phys. 2014;147:273–84.

    Article  CAS  Google Scholar 

  61. Silverman T, Naffakh M, Marco C, Ellis G. Morphology and thermal properties of biodegradable poly(hydroxybutyrate-co-hydroxyvalerate)/tungsten disulphide inorganic nanotube nanocomposites. Mater Chem Phys. 2016;170:145–53.

    Article  CAS  Google Scholar 

  62. Naguib HF, Aziz MSA, Saad GR. Effect of organo-modified montmorillonite on thermal properties of bacterial poly(3-hydroxybutyrate). Polym Plast Technol Eng. 2014;53(90–6):29.

    Google Scholar 

  63. D’Amico DA, Manfredi LB, Cyras VP. Crystallization behavior of poly(3-hydroxybutyrate) nanocomposites based on modified clays: effect of organic modifiers. Thermochim Acta. 2012;544:47–53.

    Article  CAS  Google Scholar 

  64. Branciforti MC, Corrêa MCS, Pollet E, Agnelli JAM, Nascente PADP, Avérous L. Crystallinity study of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. Polym Test. 2013;32:1253–60.

    Article  CAS  Google Scholar 

  65. El-Taweel SHH, Stoll B. Spherulitic growth rate of blends of polyhydroxybutyrate (PHB) with oligomeric atactic PHB-diol. J Macromol Sci Part B Phys. 2012;51:567–79.

    Article  CAS  Google Scholar 

  66. Xu P, Ma P, Hoch M, Arnoldi E, Cai X, Dong W, et al. Transparent blown films from poly(lactide) and poly(ethylene-co-vinyl acetate) compounds: structure and property. Polym Degrad Stab. 2016;129:328–3767.

    Article  CAS  Google Scholar 

  67. Del Gaudio C, Ercolani E, Nanni F, Bianco A. Assessment of poly(ɛ-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends processed by solvent casting and electrospinning. Mater Sci Eng A. 2011;528:1764–72.

    Article  CAS  Google Scholar 

  68. Jiang N, Abe H. Crystallization and melting behavior of partially miscible six-armed poly(l-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. J Appl Polym Sci. 2015;132:42548–56.

    Google Scholar 

  69. Miao L, Qiu Z, Yang W, Ikehara T. Fully biodegradable poly(3-hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene succinate) blends: phase behavior, crystallization and mechanical properties. React Funct Polym. 2008;68:446–57.

    Article  CAS  Google Scholar 

  70. Liu Q, Zhang H, Deng B, Zhao X. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): structure, property, and fiber. Int J Polym Sci. 2014;2014:1–11.

    CAS  Google Scholar 

  71. Öner M, Çöl AA, Pochat-Bohatier C, Bechelany M. Effect of incorporation of boron nitride nanoparticles on the oxygen barrier and thermal properties of poly(3-hydroxybutyrate-co-hydroxyvalerate). RSC Adv. 2016;6:90973–81.

    Article  CAS  Google Scholar 

  72. Abdelwahab MA, Flynn A, Sen Chiou B, Imam S, Orts W, Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab. 2012;97:1822–8.

    Article  CAS  Google Scholar 

  73. Schultz JM. On nucleation in miscible polymer blends. Polymer. 2017;108:301–4.

    Article  CAS  Google Scholar 

  74. Gestí S, Zanetti M, Lazzari M, Franco L, Puiggalí J. Study of clay nanocomposites of the biodegradable polyhexamethylene succinate. Application of isoconversional analysis to nonisothermal crystallization. J Polym Sci Part B: Polym Phys. 2008;46:2234–48.

    Article  CAS  Google Scholar 

  75. El-Taweel SH, Höhne GWH, Mansour AA, Stoll B, Seliger H. Glass transition and the rigid amorphous phase in semicrystalline blends of bacterial polyhydroxybutyrate PHB with low molecular mass atactic R, S-PHB-diol. Polymer. 2004;45:983–92.

    Article  CAS  Google Scholar 

  76. Zhang R, Zheng H, Lou X, Ma D. Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci. 1994;51:51–6.

    Article  CAS  Google Scholar 

  77. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M. Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci. 2007;42:6501–9.

    Article  CAS  Google Scholar 

  78. Tang CY, Chen DZ, Tsui CP, Uskokovic PS, Yu PHF, Leung MCP. Nonisothermal melt-crystallization kinetics of hydroxyapatite-filled poly(3-hydroxybutyrate) composites. J Appl Polym Sci. 2006;102:5388–95.

    Article  CAS  Google Scholar 

  79. Yu H, Qin Z, Zhou Z. Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int. 2011;21:478–84.

    Article  Google Scholar 

  80. Jing X, Qiu Z. Effect of low thermally reduced graphene loadings on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate). Ind Eng Chem Res. 2012;51:13686–91.

    Article  CAS  Google Scholar 

  81. Cai H, Qiu Z. Effect of comonomer content on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Phys Chem Chem Phys. 2009;11:9569.

    Article  CAS  PubMed  Google Scholar 

  82. D’Amico DA, Cyras VP, Manfredi LB. Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly(3-hydroxybutyrate) and modified clays. Thermochim Acta. 2014;594:80–8.

    Article  CAS  Google Scholar 

  83. Long Y, Shanks RA, Stachurski ZH. Kinetics of polymer crystallisation. Prog Polym Sci. 1995;20:651–701.

    Article  CAS  Google Scholar 

  84. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  85. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  86. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  87. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  88. Hsu SF, Wu TM, Liao CS. Nonisothermal crystallization behavior and crystalline structure of poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. J Polym Sci Part B: Polym Phys. 2007;45:995–1002.

    Article  CAS  Google Scholar 

  89. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.

    Article  Google Scholar 

  90. Hwang S-H, Jung JC, Lee S-W. Crystallinity and thermal characterization of P(HB-HV)/PVAc blend. Eur Polym J. 1998;34:949–53.

    Article  CAS  Google Scholar 

  91. Ziaee Z, Supaphol P. Non-isothermal melt- and cold-crystallization kinetics of poly(3-hydroxybutyrate). Polym Test. 2006;25:807–18.

    Article  CAS  Google Scholar 

  92. Shichao W, Hengxue X, Renlin W, Zhe Z, Meifang Z. Influence of amorphous alkaline lignin on the crystallization behavior and thermal properties of bacterial polyester. J Appl Polym Sci. 2015;132:41325–34.

    Article  CAS  Google Scholar 

  93. Duan B, Wang M, Zhou W-Y, Cheung W-L. Nonisothermal melt-crystallization behavior of calcium phosphate/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposite microspheres. Polym Eng Sci. 2011;51:1580–91.

    Article  CAS  Google Scholar 

  94. Vyazovkin S. A time to search: finding the meaning of variable activation energy. Phys Chem Chem Phys. 2016;18:18643–56.

    Article  CAS  PubMed  Google Scholar 

  95. de Lima Souza J, Kobelnik M, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of crystallization of PHB in presence of hydroxy acids. J Therm Anal Calorim. 2009;97:525–8.

    Article  CAS  Google Scholar 

  96. El-Taweel S, Al-Ahmadi A, Alhaddad O, Okasha R. Cationic cyclopentadienyliron complex as a novel and successful nucleating agent on the crystallization behavior of the biodegradable PHB polymer. Molecules. 2018;23:2703.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safaa H. El-Taweel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Taweel, S.H., Al-Ahmadi, A. Non-isothermal crystallization kinetics of poly(3-hydroxybutyrate)/EVA 80 blends enhanced by NH4Cl as a nucleating agent. J Therm Anal Calorim 137, 1657–1672 (2019). https://doi.org/10.1007/s10973-019-08032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08032-y

Keywords

Navigation