Skip to main content
Log in

Convective heat transfer studies on helically corrugated tubes with spiraled rod inserts using TiO2/DI water nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Convective heat transfer and friction factor studies are experimentally carried out in a smooth and five helically corrugated tubes of different heights and pitches of corrugation with spiraled rod inserts. The experiment is conducted under turbulent flow (Re = 4800–8900) and constant wall heat flux conditions. Deionized (DI) water and titanium dioxide (TiO2)/DI water nanofluids are used as working fluids. The average size of TiO2 nanoparticles is 32 nm. Two volume concentrations of nanofluids (0.25 and 0.5%) are used in this study. The combined effects of nanofluids, inserts and corrugation in tubes on Nusselt number and friction factor are investigated. The results indicate that (i) the addition of TiO2 nanoparticles in DI water upsurges the heat transfer rate, which increases with nanofluids volume concentrations; (ii) use of inserts and corrugation in tubes enhances the heat transfer rate further; (iii) among the corrugated tubes, the tube having highest corrugation height (hc = 1 mm) and lowest pitch (pc = 8 mm) with spiraled rod insert of smaller pitch (pi = 30 mm) shows the maximum thermal performance factor of 1.56 for 0.5% volume concentration of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (m2)

C p :

Specific heat (J kg−1 K−1)

d :

Test section diameter (m)

f :

Friction factor

h :

Heat transfer coefficient (W m−2 K−1)

h c :

Corrugation height (m)

I :

Current (A)

L :

Length of the test section (m)

m :

Mass flow rate (kg s−1)

Nu :

Nusselt number

ΔP :

Pressure drop (N m−2)

P :

Perimeter (m)

p c :

Corrugation pitch (m)

p i :

Pitch (insert) (m)

Pr :

Prandtl number

Q :

Electrical heat input (W)

q″ :

Heat flux (W m−2)

R :

Thermal resistance (°C m2 W−1)

Re :

Reynolds number

T :

Temperature (K)

V :

Voltage (V)

v :

Fluid velocity (m s−1)

x :

Axial distance from tube entrance (m)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (kg m−2 s−1)

∅:

Volume concentration (%)

η :

Thermal performance factor

c:

Corrugation

f:

Fluid

i:

Insert

in:

Inlet

nf:

Nanofluid

out:

Outlet

pt:

Plain tube

s:

Solid phase

t:

Total

w:

Wall

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles. In: Developments and applications of non-Newtonian flows. ASME, New York, FED-vol.231/MD, vol 66; 1995. p. 99–105.

  2. Heris SZ, Esfahany MN, Gh Etemad S. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28:203–10.

    Article  CAS  Google Scholar 

  3. Kayhani MH, Soltanzadeh H, Hayat MM, Nazari M, Kowsary M. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.

    Article  CAS  Google Scholar 

  4. Fotukian SM, Esfahany MN. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf. 2010;37:214–9.

    Article  CAS  Google Scholar 

  5. Rea U, McKrell T, Hu LW, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. Int J Heat Mass Transf. 2009;52:2042–8.

    Article  CAS  Google Scholar 

  6. Nasiri M, Gh Etemad S, Bagheri R. Experimental heat transfer of nanofluid through an annular duct. Int Commun Heat Mass Transf. 2011;38:958–63.

    Article  CAS  Google Scholar 

  7. Duangthongsuk W, Wongswises S. experimental study on the heat transfer performance and pressure drop of TiO2/water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53:334–44.

    Article  CAS  Google Scholar 

  8. Sajadi AR, Kazemi MH. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in a circular tube. Int Commun Heat Mass Transf. 2011;38:1474–8.

    Article  CAS  Google Scholar 

  9. Ferrouillat S, Bontemps A, Ribeiro J, Gruss J, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluid in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow. 2011;32:424–39.

    Article  CAS  Google Scholar 

  10. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. An experimental investigation. J Therm Anal Calorim. 2016;124(2):827–38.

    Article  CAS  Google Scholar 

  11. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    Article  CAS  Google Scholar 

  12. Bahiraei M, Heshmatian S. Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: thermal performance and irreversibility considerations. Energy Conver Manag. 2017;149:155–67.

    Article  CAS  Google Scholar 

  13. Bahiraei M, Khosravi R, Heshmatian S. Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl Therm Eng. 2017;123:266–76.

    Article  Google Scholar 

  14. Bahiraei M, Gharagozloo K, Alighardashi M, Mazaheri N. CFD simulation of irreversibilities for laminar flow of a power-law nanofluid within a mini channel with chaotic perturbations: an innovative energy-efficient approach. Energy Conver Manag. 2017;144:374–87.

    Article  Google Scholar 

  15. Bahiraei M, Mazaheri N, Alighardashi M. Development of chaotic advection in laminar flow of a non-Newtonian nanofluid: a novel application for efficient use of energy. Appl Therm Eng. 2017;124:1213–23.

    Article  CAS  Google Scholar 

  16. Bahiraei M, Mazaheri N. Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: thermal and energy efficiency considerations. Int J Mech Sci. 2018;138–139:337–49.

    Article  Google Scholar 

  17. Bahiraei M, Mazaheri N. Second law analysis for flow of a nanofluid containing graphene–platinum nanoparticles in a mini channel enhanced with chaotic twisted perturbations. Chem Eng Res Des. 2018;136:230–41.

    Article  CAS  Google Scholar 

  18. Dabri E, Bahrami F, Mohammadzadeh S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim. 2018;131(3):2243–59.

    Article  CAS  Google Scholar 

  19. Chandrasekar M, Suresh S, Chandra Bose A. Experimental studies on heat transfer and friction factor characteristic of Al2O3/water nanofluid in a circular pipe under transition flow with wire coil inserts. Heat Transf Eng. 2011;32(6):485–96.

    Article  CAS  Google Scholar 

  20. Sundar LS, Ravi Kumar NT, Naik MT, Sharma KV. Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: an experimental study. Int J Heat Mass Transf. 2012;53:2761–8.

    Article  CAS  Google Scholar 

  21. Saeedinia M, Akhavan-Behabadi MA, Nasr M. Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux. Exp Therm Fluid Sci. 2012;36:158–68.

    Article  CAS  Google Scholar 

  22. Suresh S, Selvakumar P, Chandrasekar M, Srinivasa Raman V. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiraled rod inserts. Chem Eng Process Process Intensif. 2012;53:24–30.

    Article  CAS  Google Scholar 

  23. Chougule SS, Sahu SK. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts—a comparative study. Chem Eng Process Process Intensif. 2015;88:78–88.

    Article  CAS  Google Scholar 

  24. Khoshvaght-Aliabadi M, Shabanpour H, Alizadeh A, Sartipzadeh O. Experimental assessment of different inserts inside straight tubes: nanofluid as working media. Chem Eng Process Process Intensif. 2015;97:1–11.

    Article  CAS  Google Scholar 

  25. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22.

    Article  CAS  Google Scholar 

  26. Rathnakumar P, Iqbal SM, Michael JJ, Suresh S. Study on performance enhancement factors in turbulent flow CNT/water nanofluid through a tube fitted with helical screw louvered rod inserts. Chem Eng Process Process Intensif. 2018;127:103–10.

    Article  CAS  Google Scholar 

  27. Mohammed HA, Al-Shamani AN, Sheriff JM. Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib-groove channel. Int Commun Heat Mass Transf. 2012;39:1584–94.

    Article  CAS  Google Scholar 

  28. Darzi AAR, Farhadi M, Sedighi K, Allahyar S, Delavar MA. Turbulent heat transfer of Al2O3/water nanofluid inside helically corrugated tubes: numerical study. Int Commun Heat Mass Transf. 2013;41:68–75.

    Article  CAS  Google Scholar 

  29. Darzi AAR, Farhadi M, Sedighi K, Shafaghat R, Zabihi K. Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes. Int Commun Heat Mass Transf. 2012;39:1425–34.

    Article  CAS  Google Scholar 

  30. Ahmed MA, Yusoff MZ, Shuaib NH. Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal–corrugated channel using nanofluid. Int Commun Heat Mass Transf. 2013;42:69–74.

    Article  CAS  Google Scholar 

  31. Zimparov V. Enhancement of heat transfer by a combination of three start spirally corrugated tubes with a twisted tape. Int J Heat Mass Transf. 2001;44:551–74.

    Article  Google Scholar 

  32. Bergles AE, Lee RA, Mikic BB. Heat transfer in rough tubes with tape-generated swirl flow. J Heat Transf. 1969;91:443–5.

    Article  Google Scholar 

  33. Usui H, Sano Y, Iwashit K, Isozaki A. Enhancement of heat transfer by a combination of internally grooved rough tube and a twisted Tape. Int Chem Eng. 1986;26:97–104.

    Google Scholar 

  34. Eiamsaard S, Wongcharee K. Single-phase heat transfer of CuO/water nanofluids in micro-fin tube equipped with dual twisted tapes. Int Commun Heat Mass Transf. 2012;39:1453–9.

    Article  CAS  Google Scholar 

  35. Wongcharee K, Eiamsaard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf. 2012;39:251–7.

    Article  CAS  Google Scholar 

  36. Allounia ZE, Cimpana MR, Hol PJ, Skovind T, Gjerdet NR. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloid Surf B Biointerfaces. 2009;68:83–7.

    Article  CAS  Google Scholar 

  37. Pak BC, Cho Y. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  38. Xuan Y, Roetzel W. Conceptions of heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  39. Einstein A. Investigation on the theory of Brownian motion. New York: Dover; 1956.

    Google Scholar 

  40. Maxwell JC. Treaties on electricity and magnetism. New York: Dover; 1954.

    Google Scholar 

  41. Pathipakka G, Sivashanmugam P. Heat transfer behavior of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow. Superlat Microstruct. 2010;47:349–60.

    Article  CAS  Google Scholar 

  42. Holman JP. Experimental methods for engineers. 7th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  43. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. University of California Publica Eng. 1930;2:443–61.

    Google Scholar 

  44. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.

    Article  CAS  Google Scholar 

  45. Chen H, Yang W, He Y, Ding Y, Zhang L, Tan C, Lapkin AA, Bavykin DV. Heat transfer behavior of aqueous suspensions of titanate nanofluids. Powed Technol. 2008;183:63–72.

    Article  CAS  Google Scholar 

  46. Cengel YA. Heat transfer: A practical approach. 2nd ed. New York: McGraw-Hill Higher Education; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anbu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbu, S., Venkatachalapathy, S. & Suresh, S. Convective heat transfer studies on helically corrugated tubes with spiraled rod inserts using TiO2/DI water nanofluids. J Therm Anal Calorim 137, 849–864 (2019). https://doi.org/10.1007/s10973-019-08008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08008-y

Keywords

Navigation