Skip to main content
Log in

Reinforcement effect of nanocomposites with single/hybrid graphene nanoplatelets and magnesium hydroxide

Thermal stability, flame retardancy and mechanical performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polypropylene matrix composites based on single filler of graphene nanoplatelets (GNP) and hybrid fillers of GNP/magnesium hydroxide (MH) were fabricated via melt blending process using internal mixer followed by compression moulding. Different concentration ranges of GNP (0.5–2 mass%) and MH (5–15 mass%) in the composites were used. Upon inclusion of MH particle, the thermal stability of the composites was further improved after an initial enhancement by GNP filler. The highly flame-resistant composites were obtained that a notable decrease in burning rate was achieved with increasing GNP concentrations relative to neat PP, and the addition of MH led to further deficiency of the reduction in burning rate. The improvement in thermal stability and flame retardancy properties was strongly correlated with the formation of charred yield by adding filler. Tensile measurements indicated that the most noteworthy improvement in tensile strength and Young’s modulus was observed for 1 mass% GNP and 5 mass% MH. It can be concluded that the GNP and MH served as effective hybrid reinforcing fillers to attain the optimal thermo-mechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen RS, Ahmad S, Gan S, Salleh MN, Ab Ghani MH, Tarawneh MaA. Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochim Acta. 2016;640:52–61.

    Article  CAS  Google Scholar 

  2. Liang J, Wang J, Tsui GC, Tang C. Thermal properties and thermal stability of polypropylene composites filled with graphene nanoplatelets. J Thermoplast Compos Mater. 2017;31:246–64.

    Article  CAS  Google Scholar 

  3. Liang J, Wang J, Tsui GC, Tang C. Thermal decomposition kinetics of polypropylene composites filled with graphene nanoplatelets. Polym Test. 2015;48:97–103.

    Article  CAS  Google Scholar 

  4. Tarani E, Terzopoulou Z, Bikiaris D, Kyratsi T, Chrissafis K, Vourlias G. Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites. J Therm Anal Calorim. 2017;129:1715–26.

    Article  CAS  Google Scholar 

  5. Liang J-Z, Du Q, Tsui GCP, Tang C-Y. Tensile properties of graphene nano-platelets reinforced polypropylene composites. Compos Part B Eng. 2016;25:166–71.

    Article  CAS  Google Scholar 

  6. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer. 2011;52:4001–10.

    Article  CAS  Google Scholar 

  7. Wang F, Drzal LT, Qin Y, Huang Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci. 2015;50:1082–93.

    Article  CAS  Google Scholar 

  8. Yang K, Endoh M, Trojanowski R, Ramasamy RP, Gentleman MM, Butcher TA, Rafailovich MH. The thermo-mechanical response of PP nanocomposites at high graphene loading. Nanocomposites. 2015;1:126–37.

    Article  CAS  Google Scholar 

  9. Rybiński P, Anyszka R, Imiela M, Siciński M, Gozdek T. Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials. J Therm Anal Calorim. 2017;127:2383–96.

    Article  CAS  Google Scholar 

  10. Razak JA, Ahmad SH, Ratnam CT, Yaakub J, Mohd Abid MAA, Zainal Abidin MZ, Abd Manaf ME, Mohamad N. Facile surface modification of graphene nanoplatelets (GNPs) using covalent atps-dehydration (GNPs-ATPS) and non-covalent polyetherimide adsorption (GNPs-PEI) method. Appl Mech Mater. 2015;761:391–6.

    Article  Google Scholar 

  11. Kalantari B, Mojtahedi MRM, Sharif F, Rahbar RS. Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres. Compos Part A Appl Sci. 2015;76:203–14.

    Article  CAS  Google Scholar 

  12. Wu Z, Hu N, Wu Y, Wu S, Qin Z. The effect of ultrafine magnesium hydroxide on the tensile properties and flame retardancy of wood plastic composites. J Nanomater. 2014;2014:8.

    Google Scholar 

  13. Dittrich B, Wartig K-A, Mülhaupt R, Schartel B. Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers. 2014;6:2875.

    Article  CAS  Google Scholar 

  14. Shen H, Wang Y, Mai K. Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites. Thermochim Acta. 2009;483:36–40.

    Article  CAS  Google Scholar 

  15. Yang H, Gong J, Wen X, Xue J, Chen Q, Jiang Z, Tian N, Tang T. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol. 2015;113:31–7.

    Article  CAS  Google Scholar 

  16. Subasinghe A, Das R, Bhattacharyya D. Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. Int J Smart Nano Mater. 2016;7:202–20.

    Article  CAS  Google Scholar 

  17. Kausar A, Rafique I, Muhammad B. Significance of carbon nanotube in flame-retardant polymer/CNT composite: a review. Polym Plast Technol Eng. 2017;56:470–87.

    Article  CAS  Google Scholar 

  18. Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B. The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym Compos. 2015;36:1230–41.

    Article  CAS  Google Scholar 

  19. Mishra S, Sonawane SH, Singh RP, Bendale A, Patil K. Effect of nano-Mg(OH)2 on the mechanical and flame-retarding properties of polypropylene composites. J Appl Polym Sci. 2004;94:116–22.

    Article  CAS  Google Scholar 

  20. Yin J, Zhong Y, Zhang Y. Deformation mechanism of polypropylene composites filled with magnesium hydroxide. J Appl Polym Sci. 2005;97:1922–30.

    Article  CAS  Google Scholar 

  21. Chen X, Yu J, Guo S. Structure and properties of polypropylene composites filled with magnesium hydroxide. J Appl Polym Sci. 2006;102:4943–51.

    Article  CAS  Google Scholar 

  22. Liu S-P, Ying J-R, Zhou X-P, Xie X-L, Mai Y-W. Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA. Compos Sci Technol. 2009;69:1873–9.

    Article  CAS  Google Scholar 

  23. Pilarska A, Bula K, Myszka K, Rozmanowski T, Szwarc-Rzepka K, Pilarski K, Chrzanowski Ł, Czaczyk K, Jesionowski T. Functional polypropylene composites filled with ultra-fine magnesium hydroxide. Open Chem. 2015;13:161–71.

    CAS  Google Scholar 

  24. Xu J, Liu J, Li K. Application of functionalized graphene oxide in flame-retardant polypropylene. J Vinyl Add Tech. 2015;21:278–84.

    Article  CAS  Google Scholar 

  25. Luo H, Yang Y, Cao X, Cai X. Thermal degradation mechanism and flame retardancy of epoxy systems containing tris (3-nitrophenyl) phosphine. J Therm Anal Calorim. 2018;132:1629–37.

    Article  CAS  Google Scholar 

  26. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.

    Article  CAS  Google Scholar 

  27. Chen RS, Ahmad S, Gan S. Characterization of rice husk-incorporated recycled thermoplastic blend composites. BioResources. 2016;11:8470–82.

    CAS  Google Scholar 

  28. Wang Z, Wu G, Hu Y, Ding Y, Hu K, Fan W. Thermal degradation of magnesium hydroxide and red phosphorus flame retarded polyethylene composites. Polym Degrad Stab. 2002;77:427–34.

    Article  CAS  Google Scholar 

  29. Rychlý J, Hudáková M, Rychlá L, Janigová I, Csomorová K, Chodák I. Magnesium hydroxide and magnesium oxide in oxidation and burning of polypropylene. J Sci Res Rep. 2014;3:772–86.

    Google Scholar 

  30. Suppakarn N, Jarukumjorn K. Mechanical properties and flammability of sisal/PP composites: effect of flame retardant type and content. Compos Part B Eng. 2009;40:613–8.

    Article  CAS  Google Scholar 

  31. Eskander SB, Tawfik ME, Tawfic ML. Mechanical, flammability and thermal degradation characteristics of rice straw fiber-recycled polystyrene foam hard wood composites incorporating fire retardants. J Therm Anal Calorim. 2018;132:1115–24.

    Article  CAS  Google Scholar 

  32. Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77.

    Article  CAS  Google Scholar 

  33. Yadav M, Rhee KY, Jung IH, Park SJ. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose. 2013;20:687–98.

    Article  CAS  Google Scholar 

  34. Hong CH, Lee YB, Bae JW, Jho JY, Nam BU, Chang D-H, Yoon S-H, Lee K-J. Tensile properties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flame retardant composites for cable insulating application. J Appl Polym Sci. 2005;97:2311–8.

    Article  CAS  Google Scholar 

  35. Chang H-C, Yang S-H, Liao Y-S, Yen CCC, Yeh S-K. Improving the flame retardancy of polypropylene/rice husk composites using graphene nanoplatelets and metal hydroxide flame retardants. In: ANTEC 2017 The plastics technology conference, SPE, Anaheim, CA, 2017, p. 636–41.

  36. Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab. 2013;98:1495–505.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thanked The National University of Malaysia and UKM Research University Grant DIP-2016-023 and GGPM-2018-061 for the donation of materials and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey Shan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.S., Mohd Amran, N.A. & Ahmad, S. Reinforcement effect of nanocomposites with single/hybrid graphene nanoplatelets and magnesium hydroxide. J Therm Anal Calorim 137, 79–92 (2019). https://doi.org/10.1007/s10973-018-7935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7935-y

Keywords

Navigation