Skip to main content
Log in

Thermogravimetry applied for catalytic degradation of atmospheric residue of petroleum on mesoporous catalyst

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetry was used in order to evaluate thermal and catalytic degradation of atmospheric residue of petroleum (ATR) which is found at Brazilian refineries, after a process of atmospheric distillation. The catalyst used for the thermocatalytic degradation of ATR was the AlMCM-41 mesoporous material. The AlMCM-41 was obtained from hydrothermal method using cetyltrimethylammonium as organic template. The calcined material was characterized by chemical analysis and X-ray diffraction. The thermogravimetry analysis was carried out at temperature range of 30 to 900 °C and heating rates of 5, 10 and 20 °C min−1, under nitrogen gas. From TG, the activation energy, determined using the Ozawa–Flynn–Wall kinetic method, decreased from 288 kJ mol−1, for pure ATR, to 55 kJ mol−1, in the presence of the AlMCM-41 material, evidencing the efficiency of the mesoporous materials for the catalytic degradation of petroleum residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [4]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Castro KKV, Figueiredo AL, Gondim AD, Coriolano ACF, Alves APM, Fernandes VJ Jr, Araujo AS. Pyrolysis of atmospheric residue of petroleum (ATR) using AlSBA-15 mesoporous material by TG and Py-GC/MS. J Therm Anal Calorim. 2014;117:953–9.

    Article  CAS  Google Scholar 

  2. Coriolano ACF, Barbosa GFS, Alberto CKD, Delgado RCOB, Castro KKV, Araujo AS. Catalytic processing of atmospheric residue of petroleum over AlSBA-15 nanomaterials with different acidity. Pet Sci Technol. 2016;34:627–32.

    Article  CAS  Google Scholar 

  3. Coriolano ACF, Barbosa GFS, Silveira JB, Freitas ICS, Fernandes VJ Jr, Araujo AS. An improved gravimetric method applied to co-processing of polyethylene terephtalate and petroleum blend using HY zeolite as catalyst. Pet Sci Technol. 2017;35:845–50.

    Article  CAS  Google Scholar 

  4. Speight JG. The chemistry and technology of petroleum. 4th ed. New York: CRC Press Taylor & Francis Group; 2006. p. 504.

    Book  Google Scholar 

  5. Feliczak-Guzik A. Hierarchical zeolites: synthesis and catalytic properties. Microporous Mesoporous Mater. 2018;259:33–45.

    Article  CAS  Google Scholar 

  6. Coriolano ACF, Oliveira AAA, Bandeira RAF, Fernandes VJ Jr, Araujo AS. Kinetic study of thermal and catalytic pyrolysis of Brazilian heavy crude oil over mesoporous Al-MCM-41 materials. J Therm Anal Calorim. 2015;119:2151–7.

    Article  CAS  Google Scholar 

  7. Coriolano ACF, Silva CGC, Costa MJF, Pergher SBC, Caldeira VPS, Araujo AS. Development of HZSM-5/AlMCM-41 hybrid micro–mesoporous material and application for pyrolysis of vacuum gasoil. Microporous Mesoporous Mater. 2013;172:206–12.

    Article  CAS  Google Scholar 

  8. Silva JMR, Oliveira MHR, Nosman T, Coriolano ACF, Fernandes GJT, Fernandes VJ Jr, Araujo AS. Catalytic distillation of an atmospheric petroleum resid using HZSM-5 and HY zeolites. Pet Sci Technol. 2017;35:1938–43.

    Article  CAS  Google Scholar 

  9. Zhao XS, Lu GQ, Millar GJ. Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem. 1996;35:2075–90.

    Article  CAS  Google Scholar 

  10. Fernandes VJ, Araujo AS. Kinetic study of H-Y zeolite regeneration by thermogravimetry. Thermochim Acta. 1995;255:273–80.

    Article  Google Scholar 

  11. Flynn JH. A function to aid in the fitting of kinetic data to a rate equation. J Phys Chem. 1957;61:110.

    Article  CAS  Google Scholar 

  12. Flynn JH. Early papers by Takeo Ozawa and their continuing relevance. Thermochim Acta. 1996;283:35–42.

    Article  Google Scholar 

  13. Reyniers GC, Froment GF, Kopinke FD, Zimmermann G. Coke formation in the thermal cracking of hydrocarbons. 4. Modeling of coke formation in naphta cracking. Ind Eng Chem Res. 1994;33:2584–90.

    Article  CAS  Google Scholar 

  14. Hagelberg P, Eilos I, Hiltunen J, Lipiäinen K, Niemi VM, Aittamaa J, Krause AOI. Kinetics of catalytic cracking with short contact times. Appl Catal A. 2002;223:73–84.

    Article  CAS  Google Scholar 

  15. Haitham M, Lababidi S, Al Humaidan F. Modeling the hydrocracking kinetics of atmospheric residue in hydrotreating, processes by the continuous lumping approach. Energy Fuels. 2011;25:1939–49.

    Article  CAS  Google Scholar 

  16. Becker J, Celse B, Guillaume D, Dulot H, Costa V. Hydrotreatment modeling for a variety of VGO feedstocks: a continuous lumping approach. Fuel. 2015;139:133–43.

    Article  CAS  Google Scholar 

  17. Panariti N, Del Bianco A, Del Piero G, Marchionna M. Petroleum residue upgrading with dispersed catalysts: part 1. catalysts activity and selectivity. Appl Catal A. 2000;204:203–13.

    Article  CAS  Google Scholar 

  18. Sanchez S, Ancheyta J. Effect of pressure on the kinetics of moderate hydrocracking of maya crude oil. Energy Fuels. 2007;21:653–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq), CAPES and National Agency of Petroleum, Natural Gas and Biofuels (ANP—Brazil) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio S. Araujo.

Additional information

The present article is based on the lecture presented at SiAT VIII conference in Punta Grossa - Brazil on August 13–15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aquino, C.B., Silva, J.M.R., Oliveira, M.H.R. et al. Thermogravimetry applied for catalytic degradation of atmospheric residue of petroleum on mesoporous catalyst. J Therm Anal Calorim 136, 2139–2144 (2019). https://doi.org/10.1007/s10973-018-7830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7830-6

Keywords

Navigation