Skip to main content
Log in

Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the thermodynamic (energy and exergy) analysis and water analysis of a modified solar still augmented with copper tube heat exchanger in coarse aggregate have been carried out and compared with conventional still performance under the same climatic conditions. Basin water temperature, solar intensity, wind velocity, cumulative yield, water conductivity, total hardness, pH value and fluoride concentration are obtained from experimental results for saline, basin and distilled water. Energy efficiency, evaporation and convective heat transfer coefficient, exergy evaporation rate and exergy efficiency are determined from energy and exergy analysis. The results show that the modified still has an efficiency of 28% and 17% greater than the conventional still. The productivity of modified and conventional still is 6.23 kg m−2 and 2.41 kg m−2, respectively. The exergy efficiency depends on the time of the test day and reaches a maximum value of 5.5% and 1.1%, respectively, for the modified and conventional still. From the water analysis, it is observed that the maximum distilled water pH, water conductivity, hardness and fluoride content are 7.5, 0.8 × 10−4 S m−1 (0.8 µS cm−1), 0.5 × 10−3 kg m−1 (0.5 mg L−1) and 0.7 × 10−3 kg m−3 (0.7 mg L−1), respectively, with the still salinity removal efficiency of 99%. The results indicate that the modified still has higher energy and exergy efficiencies and better water quality with cumulative yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

h :

Heat transfer coefficient (W m−2 K−1)

h fg :

Latent heat of evaporation (J kg−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Length (m)

U o :

Overall heat transfer coefficient (W m−2 K−1)

m :

Yield per unit area (kg m−2)

P :

Pressure (Pa)

C p :

Specific heat at constant pressure (J kg−1 K−1)

q :

Rate of heat transfer (W m−2)

T :

Temperature (K)

W :

Work (W)

A :

Basin area of the solar still (m2)

I(t)s :

Hourly incident solar radiation (W m−2)

\({\dot{\text{E}}\text{x}}\) :

Exergy (W)

\({\dot{\text{E}}\text{x}}_{\text{dest}}\) :

Exergy destructed in the solar still water (W)

\({\dot{\text{E}}\text{x}}_{\text{sun}}\) :

Exergy input from the sun to solar still (W)

\(\varepsilon_{\text{eff}}\) :

Effective emissivity

\(\sigma\) :

Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4)

\(\eta_{\text{E}}\) :

Energy efficiency of the system (%)

\(\eta_{\text{Ex}}\) :

Exergy efficiency of the system (%)

\(\omega\) :

Uncertainty

a:

Ambient air

ba:

Basin

c:

Convection

ca:

Coarse aggregate

eva:

Evaporation

gl:

Glass

i:

Input to the solar still

ins:

Insulation

out:

Output from the solar still

hx:

Heat exchanger

r:

Radiation

S:

Sun

sd:

Side of still

ws:

Water surface

w:

Water

work:

Work rate of the solar still

References

  1. Belyayev Y, Mohanraj M, Jayaraj S, Kaltayev A. Thermal performance simulation of a heat pump assisted solar desalination system for Kazakhstan climatic conditions. Heat Transf Eng. 2018;134:1–13.

    Article  CAS  Google Scholar 

  2. Badran OO. Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination. 2007;209:136–43.

    Article  CAS  Google Scholar 

  3. A-Hayek I, Badran OO. The effect of using different designs of solar stills on water distillation. Desalination. 2004;169:121–7.

    Article  CAS  Google Scholar 

  4. Naima MM, El Kawi MAA. Non-conventional solar stills Part 1. Non-conventional solar stills with charcoal particles as absorber medium. Desalination. 2002;153:55–64.

    Article  Google Scholar 

  5. Aboabboud MM, Horvath L, Szepvolgyi J, Mink G, Radhika E, Kudish AI. The use OD thermal energy cycle unit in conjunction with a basin type solar still for enhanced productivity. Energy. 1997;22:83–91.

    Article  Google Scholar 

  6. Abdallah S, Badran O, Abu-Khader MM. Performance evaluation of a modified design of a single slope solar still. Desalination. 2008;219:222–30.

    Article  CAS  Google Scholar 

  7. Ayoub GM, Malaeb L. Economic feasibility of a solar still desalination system with enhanced productivity. Desalination. 2014;335:27–32.

    Article  CAS  Google Scholar 

  8. El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energy. 2009;86:1187–95.

    Article  CAS  Google Scholar 

  9. Akash BA, Mohsen MS, Osta O, Elayan Y. Experimental evaluation of a single basin solar still using different absorbing materials. Renew Energy. 1998;14:307–10.

    Article  Google Scholar 

  10. Panchal HN. Enhancement of distillate output of double basin solar still with vacuum tubes. J King Saud Univ Eng Sci. 2015;27:170–5.

    Google Scholar 

  11. Voropoulos K, Mathioulakis E, Belessiotis V. Experimental investigation of a solar still coupled with solar collectors. Desalination. 2001;138:28–31.

    Article  Google Scholar 

  12. Murugavel KK, Chokalingam KK, Sridhar K. An experimental study on single basin double slope simulation solar still with thin layer of water in the basin. Desalination. 2008;220:687–93.

    Article  CAS  Google Scholar 

  13. Velmurugan V, Srithar K. Solar stills integrated with a mini solar pond: analytical simulation and experimental validation. Desalination. 2007;216:232–41.

    Article  CAS  Google Scholar 

  14. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Solar still productivity enhancement. Energy Conversat Manag. 2001;42:1401–8.

    Article  CAS  Google Scholar 

  15. Sahoo BB, Sahoo N, Mahanta P, Borbora L, Kalita P, Saha UK. Performance assessment of a solar still using blackened surface and thermocol insulation. Renew Energy. 2008;13:1703–8.

    Article  CAS  Google Scholar 

  16. Sakthivel M, Shanmugasundaram S. Effect of energy storage medium (black granite gravel) on the performance of a solar still. Int J Energy Res. 2008;32:68–82.

    Article  Google Scholar 

  17. Khalifa AJN, Ibrahim HA. Effect of inclination of the external reflector of simple solar still in winter: an experimental investigation for different cover angles. Desalination. 2010;264:129–33.

    Article  CAS  Google Scholar 

  18. Sakthivel M, Shanmugasundaram S, Alwarsamy T. An experimental study on a regenerative solar still with energy storage medium: jute cloth. Desalination. 2010;264:24–31.

    Article  CAS  Google Scholar 

  19. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, El-Naggar M. Effect of fin configuration parameters on single basin solar still performance. Desalination. 2015;365:15–24.

    Article  CAS  Google Scholar 

  20. Rajaseenivasan T, Murugavel KK, Elango T. Performance and exergy analysis of a double-basin solar still with different materials in basin. Desalination Water Treat. 2014;55:1786–94.

    Article  CAS  Google Scholar 

  21. Dhivagar R, Sundararaj S. A review on methods of productivity improvement in solar desalination. Appl Mech Mater. 2018;877:414–29.

    Article  Google Scholar 

  22. Kumar RK, Babu BG, Mohanraj M. Thermodynamic performance of forced convection solar air heater using pin-fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126:1657.

    Article  CAS  Google Scholar 

  23. Watmuff JH, Charters WWS, Proctor D. Solar and wind induced external coefficients for solar collectors. Rev Int. 1977;2:56.

    Google Scholar 

  24. Dunkle RV. Solar distillation-a roof type solar still and multi effect diffusion stills. Int Heat Transf Conf. 1961;1:895–902.

    Google Scholar 

  25. Baum VA, Bayaramov RB, Malevsky VM. Solar still in the deserts. In: Proceedings of international solar energy congress; 1976. p. 426.

  26. Cooper PI. Maximum efficiency of single effect solar still. Sol Energy. 1973;15:205.

    Article  Google Scholar 

  27. Tiwari GN, Gupta SP, Lawrence SN. Transient analysis of solar still in the presence of dye. Energy Conversat Manag. 1989;29:59–62.

    Article  CAS  Google Scholar 

  28. Pandya B, Kumar V, Matawala V, Patel J. Thermal comparison and multi objective optimization od single stage aqua-ammonia absorption cooling system powered by different solar collectors. J Therm Anal Calorim. 2018;134:1–14.

    Article  CAS  Google Scholar 

  29. Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev. 2006;12:593–661.

    Article  Google Scholar 

  30. Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003;74:469–88.

    Article  Google Scholar 

  31. Kianifar A, Heris SZ, Mahian O. Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases. Energy. 2012;38:31–6.

    Article  Google Scholar 

  32. Holman JP. Experimental methods for engineers. 8th ed. New York: McGraw Hill Publication; 2012. p. 62–5.

    Google Scholar 

  33. Sathyamurthy R, El-Agouz SA, Dharmaraj V. Experimental analysis of a portable solar still with evaporation and condensation chambers. Desalination. 2015;367:180–5.

    Article  CAS  Google Scholar 

  34. Sathyamurthy R, Nagarajan PK, Edwin M, Madhu B, El-Agouz SA, Ahsan A, Mageshbabu D. Experimental investigations on conventional solar still with sand heat energy storage. Int J Heat Technol. 2016;34:597–603.

    Article  Google Scholar 

  35. Sethi AK, Dwivedi VK. Exergy analysis of double slope active solar still under forced circulation mode. Desalination Water Treat. 2013;51:7394–400.

    Article  CAS  Google Scholar 

  36. Pandey AK, Tyagi VV, Rahim NA, Kaushik SC, Tyagi SK. Thermal performance evaluation of direct flow solar water heating system using exergetic approach. J Therm Anal Calorim. 2015;121:1365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Dhivagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivagar, R., Sundararaj, S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J Therm Anal Calorim 136, 89–99 (2019). https://doi.org/10.1007/s10973-018-7746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7746-1

Keywords

Navigation