Skip to main content
Log in

Energy, exergy, economic and enviro-economic (4E) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the energy, exergy, economic and enviro-economic assessments of gravel coarse aggregate sensible heat storage-assisted single-slope solar still are performed. The gravel coarse aggregate sensible heat storage bed preheats the saline water before entering the basin of the solar still and also stores the excess sensible heat. The experimental observations have been made under the climatic conditions of Coimbatore city in India during the year 2018. The experimental results showed that the maximum energy and exergy efficiency of about 32% and 4.7% were observed for 1 cm water depth. The maximum productivity of about 4.21 kg m−2 per day was observed for 1 cm water depth during the period of 12 h of observation. The economic analysis revealed that the cost of distillate per litre was estimated as 0.0618$ with a payback period of 4.3 months. Moreover, it is observed that the proposed solar still configuration has reduced 8.27 tons of CO2 emissions for 1 cm water depth during its life cycle. The parametric analysis results confirmed that the solar irradiation and water depths are the two major parameters influencing the performance of a solar still. Furthermore, the water quality assessment revealed that all the water samples collected from the solar stills are suitable for drinking and also meet the requirements of the Bureau of Indian Standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

C p :

Specific heat (kJ kg−1 K−1)

E :

Energy (W)

\({\text{Ex}}\) :

Exergy (W)

\(I(t)\) :

Incident solar energy (W m−2)

\(h\) :

Heat transfer coefficient (W m−2 K−1)

L :

Latent heat of evaporation (kJ kg−1)

m :

Hourly distillate (kg)

P :

Pressure (N m−2)

T :

Temperature (K)

\(U\) :

Overall heat transfer coefficient (W m−2 K−1)

V :

Wind velocity (m s−1)

w r :

Total uncertainty (%)

S :

Salvage value

\(N_{{{\text{CO}}_{2} }}\) :

Net CO2 mitigation

\(R_{{{\text{CO}}_{2} }}\) :

Market price of CO2 mitigation

AC:

Annual cost

AMC:

Annual maintenance cost

ASV:

Annual salvage value

BIS:

Bureau of Indian Standards

CC:

Capital cost

CCE:

Carbon credit earned

CPL:

Cost per litre

CRF:

Capital recovery factor

FAC:

Fixed annual cost

SSF:

Sinking fund factor

LT:

Life time of the solar still

ɛ eff :

Effective emissivity

σ :

Stefan–Boltzmann constant, 5.67 × 10−8 W m−2 K−4

\(\alpha\) :

Absorptivity

\(\tau\) :

Transmissivity

\(\eta\) :

Efficiency

µ :

Water conductivity

A:

Ambient air

b:

Basin

C:

Convection

Ca:

Coarse aggregate

Ch:

Charge

D:

Destruction

Eva:

Evaporation

g:

Glass

Ge:

Gained energy

In:

Input (embodiment) energy

Ins:

Insulation

O:

Overall

Out:

Output energy

R:

Radiation

s:

Sun

Ss:

Solar still

St:

Stored energy

Sky:

Sky

T:

Total

w:

Water

References

  1. Arunkumar T, Raja K, Rufuss DDW, Denkenberger D, Tingting D, Xuan L, Velraj R. A review of efficient high productivity solar stills. Renew Sustain Energy Rev. 2019;101:197–220.

    CAS  Google Scholar 

  2. Rufuss DDW, Iniyan S, Suganthi L, Davies PA. Solar stills: a comprehensive review on design, performance and material advances. Renew Sustain Energy Rev. 2016;63:464–96.

    Google Scholar 

  3. Mevada D, Panchal H, Sadasivuni KK, Israr M, Suresh M, Dharaskar S, Thakkar H. Effect of fin configuration parameters on performance of solar still: a review. Groundw Sustain Dev. 2020;10:100289.

    Google Scholar 

  4. Shukla A, Kant K, Sharma A. Solar still with latent heat energy storage: a review. Innov Food Sci Eng Technol. 2017;41:34–46.

    Google Scholar 

  5. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2020;139:1619–36.

    CAS  Google Scholar 

  6. Sathyamurthy R, El-Agouz SA, Nagarajan PK, Subramani J, Arunkumar T, Mageshbabu D, Madhu B, Bharathwaaj R, Prakash N. A review of integrating solar collectors to solar still. Renew Sustain Energy Rev. 2017;77:1069–97.

    Google Scholar 

  7. Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Research and developments on solar assisted compression heat pump systems—a comprehensive review (part B: applications). Renew Sustain Energy Rev. 2018;83:124–55.

    Google Scholar 

  8. Kabeel AE, El-Agouz SA, Sathyamurthy R, Arunkumar T. Augmenting the productivity of solar still using jute cloth knitted with sand and heat energy storage. Desalination. 2018;443:122–9.

    CAS  Google Scholar 

  9. Dumka P, Sharma A, Kushwah Y, Raghav AS, Mishra DR. Performance evaluation of single slope solar still augmented with sand filled cotton bags. J Energy Storage. 2019;25:100888.

    Google Scholar 

  10. Mohamed AF, Hegazi AA, Sultan GI, El-Said EMS. Enhancement of a solar still performance by inclusion the basalt stones as a porous sensible absorber: experimental study and thermo-economic analysis. Sol Energy Mater Sol Cells. 2019;200:109958.

    CAS  Google Scholar 

  11. Dhivagar R, Sundraraj S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchange in coarse aggregate. J Therm Anal Calorim. 2019;136:89–99.

    CAS  Google Scholar 

  12. Rabhi K, Nciri R, Nasri F, Ali C, Bacha HB. Experimental performance analysis of a modified single basin single slope solar still with pin–fins absorber and condenser. Desalination. 2017;416:86–93.

    CAS  Google Scholar 

  13. Srivastava PK, Agrawal SK. Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers. Desalination. 2013;311:198–205.

    CAS  Google Scholar 

  14. Rajaseenivasan T, Srithar K. Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination. 2016;380:66–74.

    CAS  Google Scholar 

  15. El-Sebaii AA, El-Naggar M. Year round performance and cost analysis of a finned single basin solar still. Appl Therm Eng. 2017;110:787–94.

    CAS  Google Scholar 

  16. Sakthivel M, Shanmugasundram S, Alwarsamy T. An experimental study on a regenerative solar still with energy storage medium—jute cloth. Desalination. 2010;264:24–31.

    CAS  Google Scholar 

  17. Sakthivel TG, Arjunan TV. Thermodynamic performance comparison of single slope solar stills with and without cotton cloth energy storage medium. J Therm Anal Calorim. 2019;137:351–60.

    CAS  Google Scholar 

  18. Modi KV, Modi GJ. Performance of single slope double basin solar stills with small pile of wick materials. Appl Therm Eng. 2019;149:723–30.

    Google Scholar 

  19. Srithar K, Rajaseenivasan T. Recent fresh water augmentation techniques in solar still and HDH desalination—a review. Renew Sustain Energy Rev. 2018;82:629–44.

    Google Scholar 

  20. Arunkumar T, Ao Y, Luo Z, Zhang L, Li J, Denkenberger D, Wang J. Energy efficient materials for solar water distillation—a review. Renew Sustain Energy Rev. 2019;115:109409.

    CAS  Google Scholar 

  21. Nazari S, Safarzadeh H, Bahiraei M. Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nano fluid. Renew Energy. 2019;135:729–44.

    CAS  Google Scholar 

  22. Kabeel AE, Sathyamurthy R, Sharshir SW, Muthumanokar A, Panchal H, Prakash N, Prasad C, Nandakumar S, El-Kady MS. Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. J Clear Prod. 2019;213:185–91.

    CAS  Google Scholar 

  23. Kabeel AE, Abdelgaied M, Eisa A. Effect of graphite mass concentrations in a mixture graphite nano particles and paraffin wax as hybrid storage materials on performance of solar still. Renew Energy. 2019;132:119–28.

    CAS  Google Scholar 

  24. Kabeel AE, Abdelaziz GB, El-Said EMS. Experimental investigation of a solar still with composite heat storage: energy, exergy and economic analysis. J Clear Prod. 2019;231:21–34.

    Google Scholar 

  25. Arunkumar T, Murugesan D, Raj K, Denkenberger D, Viswanathan C, Rufuss DDW, Velraj R. Effect of nano-coated CuO absorbers with PVA sponges in solar water desalting system. Appl Therm Eng. 2019;148:1416–24.

    CAS  Google Scholar 

  26. Sharshir SW, Peng G, Elsheikh AH, Edreis EMA, Eltawil MA, Abdelhamid T, Kabeel AE, Zang J, Yang N. Energy and exergy analysis of solar stills with micro/nano particles: a comparative study. Energy Convers Manag. 2018;177:363–75.

    CAS  Google Scholar 

  27. Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nano fluids. Desalination. 2015;360:45–51.

    CAS  Google Scholar 

  28. Rashidi S, Karimi N, Mahia O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59.

    CAS  Google Scholar 

  29. Kabeel AE, El-Samadony YAF, El-Maghlany WM. Comparative study on the solar still performance utilizing different PCM. Desalination. 2018;432:89–96.

    CAS  Google Scholar 

  30. Kabeel AE, Mohamed A, Mahgoub M. The performance of a modified solar still using hot air injection and PCM. Desalination. 2016;379:102–7.

    CAS  Google Scholar 

  31. Vigneswaran VS, Kumaresan G, Dinakar BV, Kamal KK, Velraj R. Augmenting the productivity of solar still using multiple PCMs as heat energy storage. J Energy Storage. 2019;26:101019.

    Google Scholar 

  32. Kumar TRS, Jegadheeswaran S, Chandramohan P. Performance investigation on fin tube solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136:101–12.

    Google Scholar 

  33. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020;139:1585–617.

    CAS  Google Scholar 

  34. Sampathkumar K, Senthilkumar P. Utilization of solar water heater in a single basin solar still—an experimental study. Desalination. 2012;297:8–19.

    CAS  Google Scholar 

  35. Omara ZM, Eltawil MA, ElNashar EA. A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination. 2013;325:56–69.

    CAS  Google Scholar 

  36. Abdullah AS. Improving the performance of stepped solar still. Desalination. 2013;319:60–5.

    CAS  Google Scholar 

  37. Hidour K, Slama RB, Gabsi S. Hybrid solar still by heat pump compression. Desalination. 2010;250:444–9.

    Google Scholar 

  38. Halima HB, Frikha N, Slama RB. Numerical investigation of a simple solar still coupled with a compression heat pump. Desalination. 2014;337:60–6.

    Google Scholar 

  39. Belyayev Y, Mohanraj M, Jayaraj S, Kaltayev A. Thermal performance simulation of a heat pump assisted solar desalination system for Kazakhstan conditions. Heat Transf Eng. 2019;40:1060–72.

    CAS  Google Scholar 

  40. Shakir Y, Belyayev Y, Kaltayev A, Mohanraj M, Jayaraj S. Numerical simulation of a heat pump assisted regenerative solar still working with and without heat storage for cold climates of Kazakhstan. Therm Sci Sci J. 2017;21:411–8.

    Google Scholar 

  41. Hidouri K, Mohanraj M. Thermodynamic analysis of a heat pump assisted active solar still. Desalin Water Treat. 2019;154:101–10.

    CAS  Google Scholar 

  42. Deniz E, Cinar S. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification. Energy Convers Manag. 2016;126:12–9.

    Google Scholar 

  43. Yousel MS, Hassan H, Sekiguchi H. Energy, exergy, economic and enviroeconomic (4E) analysis of solar distillation system using different absorbing materials. Appl Therm Eng. 2019;150:30–41.

    Google Scholar 

  44. Elbar ARA, Yousef MS, Hassar H. Energy, exergy, exergo-economical and enviro-economical (4E) evaluation of new integration of solar still with photovoltaic panel. J Clear Prod. 2019;233:665–80.

    Google Scholar 

  45. Holman JP. Experimental methods for engineers. New Delhi: Tata Mcgraw Hill Publishing Company; 2007.

    Google Scholar 

  46. Elango C, Gunasekaran N, Sampathkumar K. Thermal models of solar still—a comprehensive review. Renew Sustain Energy Rev. 2015;47:856–911.

    Google Scholar 

  47. Yousef ZH, Mousa KA. Modeling and performance analysis of a regenerative solar desalination unit. Appl Therm Eng. 2004;24:1061–72.

    Google Scholar 

  48. Murugavel KK, Sivakumar S, Ahamed RJ, Chockalingam KK, Srithar K. Single basin double slope solar still with minimum basin depth and energy storing materials. Appl Energy. 2010;87:514–23.

    Google Scholar 

  49. Velmurugan V, Deenadayalan CK, Vinod H, Srithar K. Desalination of effluent using fin type solar still. Energy. 2008;33:1719–27.

    Google Scholar 

  50. Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev. 2006;12:593–661.

    Google Scholar 

  51. Vaithilingam S, Esakkimuthu GS. Energy and exergy analysis of single slope passive solar still: an experimental investigation. Desalin Water Treat. 2014;55:1–12.

    Google Scholar 

  52. Esfahani JA, Rahbar N, Lavvaf M. Utilization of thermoelectric cooling in a portable active solar still—an experimental study on winter days. Desalination. 2011;269:198–205.

    CAS  Google Scholar 

  53. Dwivedi VK, Tiwari GN. Thermal modeling and carbon credit earned of a double slope passive solar still. Desalin Water Treat. 2012;13:400–10.

    Google Scholar 

  54. Ranjan KR, Kaushik SC. Energy, exergy and thermo-economic analysis of solar distillation systems: a review. Renew Sustain Energy Rev. 2013;27:709–23.

    Google Scholar 

  55. Dwivedi VK, Tiwari GN. Annual energy and exergy analysis of single and double slope passive solar stills. Trends Appl Sci Res. 2008;3:225–41.

    Google Scholar 

  56. Ranjan KR, Kaushik SC, Panwar NL. Energy and exergy analysis of passive solar distillation systems. Int J Low Carbon Technol. 2013;11:1–11.

    Google Scholar 

  57. Rufuss DDW, Iniyan S, Suganthi L. Combined effect of heat storage, reflective material, and additional heat source on the productivity of a solar still—techno-economic approach. J Test Eval. 2018;46:15–24.

    Google Scholar 

  58. Pal P, Dev R, Singh D, Ahsan A. Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi-wick basin type double slope solar still. Desalination. 2018;447:55–73.

    CAS  Google Scholar 

  59. Hassan H, Ahmed MS, Fathy M. Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC). Renew Energy. 2018;135:24–32.

    Google Scholar 

  60. Phadatare MK, Verma SK. Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination. 2007;217:265–75.

    Google Scholar 

  61. Kumar S, Tiwari GN. Thermal modelling, validation and exergetic analysis of a hybrid photovoltaic/thermal (PV/T) active solar still. Int J Exergy. 2009;6:567–691.

    Google Scholar 

  62. Gunasekar N, Mohanraj M, Velmurugan V. Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps. Energy. 2015;86:908–22.

    Google Scholar 

  63. Dhivagar R, Sundararaj S. A review on methods of productivity improvement in solar desalination. Appl Mech Mater. 2018;877:414–29.

    Google Scholar 

  64. Arghyam. Indian standard for drinking water as per BIS specification- IS10500. Bur Indian Stand. 2005;2:1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dhivagar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivagar, R., Mohanraj, M., Hidouri, K. et al. Energy, exergy, economic and enviro-economic (4E) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still. J Therm Anal Calorim 145, 475–494 (2021). https://doi.org/10.1007/s10973-020-09766-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09766-w

Keywords

Navigation