Skip to main content
Log in

Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature rise in photovoltaic cells causing drop in their open-circuit voltage is a serious issue to be dealt with. A wide range of cooling techniques have been proposed by researchers due to its positive results on electrical efficiency during operation. One of the prominent techniques in the field is using a hybrid photovoltaic thermal (PV/T) design which in turns utilizes a working fluid to extract the heat from the collector. Various PV/T designs have been proposed, most prominently nanofluid and nanofluid with nano-PCM-based PV/T. This paper aims to evaluate the two techniques of cooling a grid-connected PV system and examines the systems electrical and combined efficiency, in addition to performing exergy analysis. The two systems are experimentally tested for outdoors conditions in Bangi, Malaysia. The results show the two systems achieving highest electrical exergies of 73 and 74.52 for nanofluid and nanofluid with nano-PCM, respectively. Both systems achieved higher exergies than water-cooled and conventional GCPV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Al-Maamary HMS, Kazem HA, Chaichan MT. Climate change: the game changer in the Gulf Cooperation Council region. Renew Sustain Energy Rev. 2017;76:555–76.

    Article  Google Scholar 

  2. Al-Maamary HMS, Kazem HA, Chaichan MT. The impact of oil price fluctuations on common renewable energies in GCC countries. Renew Sustain Energy Rev. 2017;75:989–1007.

    Article  Google Scholar 

  3. Akella AK, Saini RP, Sharma MP. Social, economical and environmental impacts of renewable energy systems. Renew Energy. 2009;34(2):390–6.

    Article  Google Scholar 

  4. Al-Waeli AH, Kazem HA, Chaichan MT. Review and design of a standalone PV system performance. Int J Comput Appl Sci IJOCAAS. 2016;1(1):1–6.

    Article  Google Scholar 

  5. Krieth F, Kreider JF. Principle of solar engineering. Hemisphere, Washington DC (1978)

    Google Scholar 

  6. Bahnemann D. Photocatalytic water treatment: solar energy applications. Sol Energy. 2004;77(5):445–59.

    Article  CAS  Google Scholar 

  7. Green MA. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl. 2009;17(3):183–9.

    Article  CAS  Google Scholar 

  8. Al-Waeli AH, et al. Photovoltaic solar thermal (PV/T) collectors past, present and future: A. Int J Appl Eng Res. 2016;11(22):10757–65.

    Google Scholar 

  9. Fudholi A, et al. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers Manag. 2014;78:641–51.

    Article  Google Scholar 

  10. Chaichan MT, Abaas KI, Salih HM. Practical investigation for water solar thermal storage system enhancement using sensible and latent heats in Baghdad-Iraq weathers. J Al-Rafidain Univ Collage Sci. 2014;33:158–82.

    Google Scholar 

  11. Yousif JH, Kazem HA, Boland J. Predictive models for photovoltaic electricity production in hot weather conditions. Energies. 2017;10(7):971.

    Article  Google Scholar 

  12. Chow TT, Hand JW, Strachan PA. Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Appl Therm Eng. 2003;23(16):2035–49.

    Article  CAS  Google Scholar 

  13. Teo HG, Lee PS, Hawlader MNA. An active cooling system for photovoltaic modules. Appl Energy. 2012;90(1):309–15.

    Article  Google Scholar 

  14. Tripanagnostopoulos Y, et al. Energy, cost and LCA results of PV and hybrid PV/T solar systems. Prog Photovolt Res Appl. 2005;13(3):235–50.

    Article  CAS  Google Scholar 

  15. Sun J, Shim M. Numerical simulation of electric-thermal performance of a solar concentrating photovoltaic/thermal system. In: Power and energy engineering conference, 2009. APPEEC 2009. Asia-Pacific. IEEE (2009).

  16. Othman MY, et al. Performance analysis of PV/T Combi with water and air heating system: an experimental study. Renew Energy. 2016;86:716–22.

    Article  CAS  Google Scholar 

  17. Hou L, et al. An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T). Energy Build. 2016;124:60–9.

    Article  Google Scholar 

  18. Sarhaddi F, et al. Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy Build. 2010;42(11):2184–99.

    Article  Google Scholar 

  19. Kjaer SB, Pedersen JK, Blaabjerg F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind Appl. 2005;41(5):1292–306.

    Article  Google Scholar 

  20. Verma D, Midtgård O-M, Sætre TO. Review of photovoltaic status in a European (EU) perspective. In: Photovoltaic specialists conference (PVSC), 2011 37th IEEE. IEEE, pp. 003292–003297 (2011)

  21. Sandnes B, Rekstad J. A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Sol Energy. 2002;72(1):63–73.

    Article  CAS  Google Scholar 

  22. Hassani S, et al. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energy Convers Manag. 2016;123:431–44.

    Article  CAS  Google Scholar 

  23. Chandrasekar M, Suresh S, Senthilkumar T. Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manag. 2013;71:43–50.

    Article  CAS  Google Scholar 

  24. Ghadiri M, et al. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag. 2015;103:468–76.

    Article  CAS  Google Scholar 

  25. Mehling H. Latent heat storage using a PCM-graphite composite material: advantages and potential applications. In: IEA Annex 10 Workshop (Munich), 1999 (1999).

  26. Frusteri F, et al. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 2005;25(11-12):1623–33.

    Article  CAS  Google Scholar 

  27. Mesalhy O, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manag. 2005;46(6):847–67.

    Article  CAS  Google Scholar 

  28. Sobolciaka P, Mrlíka M, AlMaadeeda MA, Krupa I. Calorimetric and dynamic mechanical behavior of phase change materials based on paraffin wax supported by expanded graphite. Thermochim Acta. 2015;617:111–9.

    Article  CAS  Google Scholar 

  29. Singh DK, et al. Myo-inositol based nano-PCM for solar thermal energy storage. Appl Therm Eng. 2017;110:564–72.

    Article  CAS  Google Scholar 

  30. Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    Article  CAS  Google Scholar 

  31. Al-Waeli AHA, Kazem HA, Sopian K, Chaichan MT. Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. Int J Sustain Energy. 2018;37(6):558–75.

    Article  Google Scholar 

  32. Chaichan MT, Al-Hamdani AH, Kasem AM. Enhancing a Trombe wall charging and discharging processes by adding nano-Al2O3 to phase change materials. Int J Sci Eng Res. 2016;7(3):736–41.

    Google Scholar 

  33. Chaichan MT, Kamel SH, Al-Ajeely ANM. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems. SAUSSUREA. 2015;5(6):48–55.

    Google Scholar 

  34. Wu S, et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuels. 2010;24(3):1894–8.

    Article  CAS  Google Scholar 

  35. Eiamsa-ard S, Promvonge P. Numerical study on heat transfer of turbulent channel flow over periodic grooves. Int Commun Heat Mass Transf. 2008;35(7):844–52.

    Article  CAS  Google Scholar 

  36. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  37. Sardarabadi M, Passandideh-Fard M, Heris SZ. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 2014;66:264–72.

    Article  CAS  Google Scholar 

  38. Al-Shamani AN, et al. Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers Manag. 2016;124:528–42.

    Article  CAS  Google Scholar 

  39. Al-Waeli AHA, et al. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers Manag. 2017;142:547–58.

    Article  CAS  Google Scholar 

  40. Accuweather, Bangi, Malaysia. https://www.accuweather.com/en/my/bangi/230471/weather-forecast/230471. Retrieved 24th April 2018.

  41. Baloch AAB, et al. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers Manag. 2015;103:14–27.

    Article  Google Scholar 

  42. Jegadheeswaran S, Pohekar SD, Kousksou T. Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage—an exergy based comparative evaluation. Energy Procedia. 2012;14:643–8.

    Article  CAS  Google Scholar 

  43. Kline SJ. Describing uncertainty in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

Download references

Acknowledgements

This work has been carried out with the support of the Grant DPP-2018-002, Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaruzzaman Sopian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopian, K., Alwaeli, A.H.A., Al-Shamani, A.N. et al. Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems. J Therm Anal Calorim 136, 147–157 (2019). https://doi.org/10.1007/s10973-018-7724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7724-7

Keywords

Navigation