Skip to main content

Advertisement

Log in

Performance enhancement of the photovoltaic system with different cooling methods

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Solar energy has been a vital renewable energy source for humanity for decades. Researchers have proposed many strategies to harness the same but solar photovoltaic (PV) is the only technology which has reached commercial scale and highly successful in meeting renewable energy goals of many countries. The major drawback of PV systems is that increase in the temperature of solar cell of the PV module beyond the threshold limit brings down its electrical efficiency (EE). Hence, this review paper discusses the different cooling techniques responsible for reducing the cell temperature, which in turn increases not only its EE, but also collection of the thermal energy that is otherwise considered to dampen the performance of the PV system. A brief study on PV with air cooling, photovoltaic thermal (PVT) with water cooling, PVT/PCM with and without fins, PVT integrated with nanofluids has been done in this review paper. PVT hybrid systems are the need of hour to get the optimum efficiency. Amongst the PVT systems, the performance analysis of PV integrated with the nanofluid is discussed and it is found to give the maximum cell temperature reduction. Since reduction in the cell temperature directly relates to better efficiency, PVT system using nanofluid as a cooling medium gives the best overall efficiency (OE) followed by PVT system incorporating water and air respectively. This review paper also gives spotlight to the real-time usages of PCM and nanofluids for the effective cooling ability especially in the case of PV module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Figure. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

All data are given in the manuscript.

Abbreviations

C :

Specific heat capacity, kJ/kg K

D :

Equivalent diameter

EE:

Electrical efficiency

TE:

Thermal efficiency

OE:

Overall efficiency

F :

Packing factor

W :

Width, m

h :

Convective heat transfer coefficient, W/m2 K

I :

Solar radiation intensity, W/m2

L :

Length, m

:

Mass flow rate, kg/s

T :

Temperature, K

U :

Overall heat transfer coefficient, W/m2 K

x :

Distance in flowing direction, m

α :

Absorption coefficient

η :

Photovoltaic efficiency

β :

Temperature coefficient of PCM

τ :

Transmission coefficient

F` :

Flat plate collector efficiency factor

ρ :

Density

V :

Volume

Φ :

Nanofluid volume fraction

Nu :

Nusselt number

Re :

Reynold’s number

Pe :

Pecklet number

Pr :

Prandle number

k :

Thermal conductivity W/m K

A :

Cross-sectional area

δ :

Thickness of the material

σ :

Stefan–Boltzman constant (5.67 × 108 W m2 K4)

ε :

Emissivity of glass

t :

Time

μ :

Viscosity of fluid

κ :

Boltzman constant

a :

Ambient

b :

Backplane

c :

Solar cell

g :

Glass

p :

PCM layer

ref :

Reference value at reference conditions

w :

Water

f :

Fluid

c :

Coil tube through which fluid flows

np :

Nanoparticle

bf :

Base fluid

nf :

Nanofluid

References

  • Abdelrahman H, Wahba W, Refaey H, Moawad M, Berbish N (2019) Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3. Sol Energy 177:665–671

    Article  CAS  Google Scholar 

  • Abdelrazik A, Sulaiman F, Saidur R (2019) Optical behavior of a water/silver nanofluid and their influence on the performance of a photovoltaic-thermal collector. Sol Energy Mater Sol Cells 201:1100542

    Article  CAS  Google Scholar 

  • Abdelrazik A, Sulaiman F, Saidur R (2020) Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems. Energy Convers Manag 205:112449

    Article  Google Scholar 

  • Abdelrazika AS, Al-Sulaimana FA, Saidurb R, Ben-Mansoura R (2018) A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renew Sust Energy Rev 95:110–129

    Article  CAS  Google Scholar 

  • Abdollahi N, Rahimi M (2020) Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling. Renew Energy 147(1):302–309

    Article  CAS  Google Scholar 

  • Abdul-Ganiyu S, Quansah DA, Ramde EW, et al (2021) Study effect of flow rate on flat-plate water-based photovoltaic-thermal (PVT) system performance by analytical technique. J Clean Prod 321. https://doi.org/10.1016/j.jclepro.2021.128985

  • Aberoumanda S, Ghamarib S, Shabani B (2018) Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: an experimental study. Sol Energy 165:167–177

    Article  CAS  Google Scholar 

  • Adine HA, Hel Q (2009) Numerical analysis of the thermal behaviour of a shelland- tube heat storage unit using phase change materials. Appl Math Model 33:2134–2144

    Article  Google Scholar 

  • Akbar A, Najafi G, Gorjian S et al (2021) Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: indoor experimental tests and multi-objective optimization. Sustain Energy Technol Assessments 46:101276. https://doi.org/10.1016/j.seta.2021.101276

    Article  Google Scholar 

  • Akgun M, Aydin O, Kaygusuz K (2007) Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers Manage 48:669–678

    Article  CAS  Google Scholar 

  • Akhsassi M, Fathi A, Erraissi N, Aarich N, Bennouna A, Raoufi A, Outzourhit A (2018) Experimental investigation and modelling of the thermal behaviour of a solar PV module. Sol Energy Mater Sol Cells 180:271–279

    Article  CAS  Google Scholar 

  • Alobaid M, Hughes B, O’Connor D, et al (2018) Improving thermal and electrical efficiency in photovoltaic thermal systems for sustainable cooling system integration. J Sustain Dev Energy, Water Environ Syst 6:305–322. https://doi.org/10.13044/j.sdewes.d5.0187

  • Arıcı M, Bilgin F, Nižetić S, Agis M (2018) Papadopoulos. Phase change material based cooling of photovoltaic panel: a simplified numerical model for the optimization of the phase change material layer and general economic evaluation. J Clean Prod 189:738–745

    Article  Google Scholar 

  • Aste N, Del Pero C, Leonforte F (2014) Water flat plate PV–thermal collectors: a review. Sol Energy 102:98–115

    Article  Google Scholar 

  • Azimi N, Davoodbeygi Y, Rahimi M et al (2022) Optimization of thermal and electrical efficiencies of a photovoltaic module using combined PCMs with a thermo-conductive filler. Sol Energy 231:283–296. https://doi.org/10.1016/j.solener.2021.11.066

    Article  CAS  Google Scholar 

  • Bahaidarah H, Subhan A, Gandhidasan P, Rehman S (2013) Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 59:445–453

    Article  Google Scholar 

  • Bajestan E, Yazdanifard F (2017) Performance of nanofluid-based photovoltaic/thermal systems: a review. Renew Sustain Energy Rev 76:323–352

    Article  CAS  Google Scholar 

  • Bergene T, Lovvik OM (1995) Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol Energy 55:453–462

    Article  CAS  Google Scholar 

  • Bhargava AK, Garg HP, Agarwal RK (1991) Study of a hybrid solar system–solar air heater combined with solar cells. Energy Convers Manage 391(5):471–479

    Article  Google Scholar 

  • Boer KW, Tamm G (2003) Solar conversion under consideration of energy and entropy. Sol Energy 74:525–528

    Article  CAS  Google Scholar 

  • Brano V, Ciulla G, Piacentino A, Cardona F (2013) On the efficacy of PCM to shave peak temperature of crystalline photovoltaic panels: an FDM model and field validation. Energies 6(12):6188–6210

    Article  Google Scholar 

  • Breeze P (Ed.) (2016). Solar power generation. Academic Press 51–55.

  • Buni M, Al-Walie, Kadhem AN Al-Asadi (2018).Effect of solar radiation on photovoltaic cell. Int Res J Adv Eng Sci 3(3):47-51

  • Cai Y, Wang L, Wang W-W, Liu D, Zhao F-Y (2020) Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: bidirectional modeling and performance optimization. J Clean Prod 254:120150

    Article  Google Scholar 

  • Chandra J, Tong W, Chyuan H, Leong KY (2016) An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build 130:272–285

    Article  Google Scholar 

  • Chandrasekar M, Suresh S, Senthilkumar T, Ganesh KM (2013) Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manag 71:43–50

    Article  CAS  Google Scholar 

  • Chandrasekar M, Suresh S, Senthilkumar T, Karthikeyan M (2013) Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manage 71:43–50

    Article  CAS  Google Scholar 

  • Chen Z, Zheng D, Wang J, Chen L, Sunden B (2019) Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater. Renew Energy 147:1011–1018

    Article  CAS  Google Scholar 

  • Chokmaviroj S, Wattanapong R, Suchart Y (2006) Performance of a 500 kWP grid connected photovoltaic system at Mae Hong Son Province, Thailand. Renew Energy 31:19–28

    Article  CAS  Google Scholar 

  • Chow TT, Ji J, He W (2005). Photovoltaic-thermal collector system for domestic application. Proceedings of the ISEC.

  • Dubey S, Andrew A (2013) Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain Dev 17(1):1–12

    Article  CAS  Google Scholar 

  • Dubey S, Tiwari GN (2008) Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Sol Energy 82:602–612

    Article  CAS  Google Scholar 

  • Duraivelu R, Elumalai N (2021) Performance evaluation of a decentralized rooftop solar photovoltaic system with a heat recovery-cooling unit. Environ Sci Pollut Res 28:19351–19366

    Article  Google Scholar 

  • Elayarani E, Mathiazhagan P (2017). Improvement of efficiency on PV/T system using nanofluids. 10th international conference (ISBN: 978–93–80689–28–9).

  • Elbar A, Hassan H (2019) Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration. Sol Energy 184:584–593

    Article  Google Scholar 

  • Elminshawy NAS, El Ghandour M, Gad HM, El-Damhogi DG, El-Nahhas K, Addas MF (2019) The performance of a buried heat exchanger system for PV panel cooling under elevated air temperatures. Geothermics 82:7–15

    Article  Google Scholar 

  • Elmir M, Mehdaoui R, Mojtabi A (2012) Numerical simulation of cooling a solar cell by forced convection in the presence of a nanofluid. Energy Procedia 18:594–603

    Article  CAS  Google Scholar 

  • Fang M, Chen GM (2007) Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng 27:994–1000

    Article  CAS  Google Scholar 

  • Fatima H, Tiwari GN (2019) Theoretical validation of photovoltaic thermal (PVT) module with a copper base for thermal and electrical performance. Renew Sustain Energy 11:043704–043710

    Article  CAS  Google Scholar 

  • Fayaz H, Rahim N, Hasanuzzaman M, Rivai A, Nasrin R (2019) Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Sol Energy 179:135–150

    Article  Google Scholar 

  • Fu Z, Li Y, Liang X et al (2021) Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs. Energy 228:120509. https://doi.org/10.1016/j.energy.2021.120509

    Article  Google Scholar 

  • Ghadiri M, Sardarabadi M, Fard M, Moghadam A (2015) Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag 103:468–476

    Article  CAS  Google Scholar 

  • Grubišić-Čabo F, Nižetić S, Čoko D, Kragić IM, Papadopoulos A (2018) Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface. J Clean Prod 176:119–129

    Article  CAS  Google Scholar 

  • Hasan A, McCormack S, Huang M, Norton B (2010) Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol Energy 84(9):1601–1612

    Article  CAS  Google Scholar 

  • Hassana A, Wahaba A, Qasim M, Janjuac M, Alid M, Aliae H, Jadoona T, Razaa E, Javaida N (2020) Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew Energy 145(C):282–293. https://doi.org/10.1016/j.renene.2019.05.130

  • Hassani S, Saidur R, Mekhilef S, Taylor R (2016) Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energy Convers Manag 123:431–444

    Article  CAS  Google Scholar 

  • Hegazy AA (2000) Comparative study of the performance of four photovoltaic/ thermal solar air collectors. Energy Convers Manage 41:861–881

    Article  CAS  Google Scholar 

  • Hel Q (2009) Numerical analysis of a coupled solar collector latent heat storage unit using various phase change materials for heating the water. Energy Convers Manage 50:247–254

    Article  CAS  Google Scholar 

  • Hong KS, Hong TK, Yang HS (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Letters 88:031901

    Article  CAS  Google Scholar 

  • Hossain M, Pandey A, Selvaraj J, Rahim N, Islam M, Tyagi V (2019) Two-side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: energy, exergy and economic analysis. Renew Energy 136:1320–1336

    Article  Google Scholar 

  • Hosseinzadeh M, Sardarabadi M, Passandideh M (2018) Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change. Material Energy 145:636–647

    Google Scholar 

  • Huang BJ, Lin TH, Hung WC, Sun FS (2001) Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 70(5):443–448

    Article  CAS  Google Scholar 

  • Indartono Y, Prakoso S, Suwono A, Zaini N, Fernaldi B (2015) Simulation and experimental study on effect of phase change material thickness to reduce temperature of photovoltaic panel. Mater Sci Eng 88:012049

    Google Scholar 

  • Indartono Y, Suwono A, Pratama F (2016) Improving photovoltaics performance by using yellow petroleum jelly as phase change material. Int J Low-Carbon Technol 11(3):333–337

    Article  CAS  Google Scholar 

  • Japs E, Sonnenrein G, Steube J, Vrabec J, Kenig E, Krauter S (2013). Technical Investigation of a photovoltaic module with integrated improved phase change material. Eur Photovolt Solar Energy Conf Exhibition 500–502

  • Kabeel AE, Mohamed A (2019) Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection. J Clean Prod 224:40–49

    Article  Google Scholar 

  • Kalogirou SA (Ed.) (2014). Solar energy engineering, second ed., Academic Press, Boston 481–540

  • Kandeal AW, Kumar TA, Elkadeem MR, Elmorshedy Mahmoud F, Zia U, Ravishankar S, Sharshir Swellam W (2020) Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. J Clean Prod 273:122772

    Article  Google Scholar 

  • Khannaa S, Reddy K, Mallicka TK (2018) Optimization of finned solar photovoltaic phase change material (finned pv pcm) system. Int J Therm Sci 130:313–322

    Article  Google Scholar 

  • Kim I-S (2007) Robust maximum power point tracker using sliding mode controller for the three-phase grid-connected photovoltaic system. Sol Energy 81:405–414

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  CAS  Google Scholar 

  • Letcher TM, Fthenakis VM (eds) (2018) A comprehensive guide to solar energy systems. Academic Press 3–16

  • Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sc China Ser e: Technol Sci 45:408–416

    CAS  Google Scholar 

  • Luque A, Hegedus S (2003). Handbook of photovoltaic Science and Engineering, John Wiley & Sons Ltd. Print ISBN:9780471491965, Online ISBN:9780470014004 https://doi.org/10.1002/0470014008

  • Mahian O, Kianifar A, Soteris KA, Pop L, Wongwises S (2013) A review of the applications of nanofluids in solar energy. Int J Heat Mass Transfer 57:582–594

    Article  CAS  Google Scholar 

  • Malvi C, Darron W, Hardy D, Crook R (2011) Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material. Sol Energy 85(7):1440–1446

    Article  CAS  Google Scholar 

  • Malvi CS, Hardy DW, Crook R (2011) Energy balance model of combined photovoltaic solar–thermal system incorporating phase change material. Sol Energy 85:1440–1446

    Article  CAS  Google Scholar 

  • Mattei M, Notton G, Cristofari C, Muselli M, Poggi P (2006) Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 31:553–567

    Article  CAS  Google Scholar 

  • Menon GS, Murali S, Elias J et al (2022) Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renew Energy 188:986–996. https://doi.org/10.1016/j.renene.2022.02.080

    Article  CAS  Google Scholar 

  • Michael J, Iniyan S (2015) Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide - water nanofluid. Sol Energy 119:439–451

    Article  CAS  Google Scholar 

  • Nada S, Nagar D, Hussein H (2018) Improving the thermal regulation and efficiency enhancement of PCM integrated PV modules using nano particles. Energy Convers Manage 166:735–743

    Article  CAS  Google Scholar 

  • Nasef H, Nada S, Hassan H (2019) Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells. Energy Convers Manage 199:112–165

    Article  CAS  Google Scholar 

  • Nižetića S, Čokob D, Yadavc A, Grubišić-Čabo F (2016) Water spray cooling technique applied on a photovoltaic panel: the performance response. Energy Convers Manage 108:287–296

    Article  Google Scholar 

  • Nižetić S, Arıcı M, Bilgin F, Grubišić-Čabo F (2018) Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. J Clean Prod 170:1006–1016

    Article  Google Scholar 

  • Odeh I, Yohanis YG, Norton B (2006) Economic viability of photovoltaic water pumping systems. Sol Energy 80:850–860

    Article  CAS  Google Scholar 

  • Othman MYH, Hussain F, Sopian K, Yatim B, Ruslan H (2013). Performance study of air-based photovoltaic- thermal (PV/T) collector with different designs of heat exchanger. Sains Malaysiana 42(9):1319–1325

  • Pak B, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J 11:151–170

    Article  CAS  Google Scholar 

  • Qeays IA, Yahya SM, Asjad M, Khan ZA (2020) Multi-performance optimization of nanofluid cooled hybrid photovoltaic thermal system using fuzzy integrated methodology. J Clean Prod 256:120451

    Article  CAS  Google Scholar 

  • Radwan A, Ahmed M, Ookawara S (2016) Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers Manag 119:289–303

    Article  CAS  Google Scholar 

  • Rahmam M, Hasanuzzaman M, Rahim NA (2015) Effects of various parameters on PV-module power and efficiency. Energy Convers Manage 103:348–358

    Article  Google Scholar 

  • Rejeb O, Gaillard L, Julien S, Ghenai C, Jemni A, Bettayeb M, Menezo C (2020) Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances. Renew Energy 146:610–627

    Article  Google Scholar 

  • Riffat SB, Cuce E (2011) A review on hybrid photovoltaic/thermal collectors and systems. Int J Low-Carbon Technol 6:212–241

    Article  CAS  Google Scholar 

  • Rosli M, Misha S, Sohif M, Sopian K (2014) Thermal efficiency of the photovoltaic thermal system with serpentine tube collector. Appl Mech Mater 699:455–461

    Article  CAS  Google Scholar 

  • Rostami Z, Rahimi M, Azimi N (2018) Using high-frequency ultrasound waves and nanofluid for increasing the efficiency and cooling performance of a PV module. Energy Convers Manage 160:141–149

    Article  CAS  Google Scholar 

  • Rukman N, Fudholi A, Razali N, Ruslan M (2019) Investigation of TiO2 and MWCNT nanofluids-based photovoltaic thermal (PV/T) system. IOP Conf Series Earth Environ Sci 268:012076

    Article  Google Scholar 

  • Salameh Z (Ed.) (2014) Renewable energy system design, Academic Press, Boston 33–113

  • Salari A, Kazemianb A, Mab T, Fard A, Peng J (2020) Nanofluid based photovoltaic thermal systems integrated with phase change materials: numerical simulation and thermodynamic analysis. Energy Convers Manag 205:112384

    Article  CAS  Google Scholar 

  • Salem M, Elsayed M, Elaziz A, Elshazly K (2019) Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques. Renew Energy 138:876–890

    Article  CAS  Google Scholar 

  • Sarafraz M, Safaei M, Leon A, Tlili I, Alkanhal T, Tian Z, Goodarzi M, Arjomandi M (2019) Experimental investigation on thermal performance of a PV/T-PCM (Photovoltaic/Thermal) system cooling with a PCM and nanofluid. Energies 12:2572

    Article  CAS  Google Scholar 

  • Sardarabadi M, Fard P, Zeinali, Heris S (2014). Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) Energy 66:264–272

  • Sardarabadi M, Fard P, Maghrebi M, Ghazikhani M (2017) Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol Energy Mater Sol Cells 161:62–69

    Article  CAS  Google Scholar 

  • Saroha S, Mittal T, Modi P, Bhalla V, Khullar V, Tyagi H, Otanicar T (2015) Theoretical analysis and testing of nanofluids-based solar photovoltaic/thermal hybrid collector. Heat Transfer 137(9):091015

    Article  CAS  Google Scholar 

  • Shahsavar A, Ameri M (2010) Experimental investigation and modelling of a direct– coupled PV/T air collector. Sol Energy 84:1938–1958

    Article  Google Scholar 

  • Shamani A, Yazdi M (2014) Nanofluids for improved efficiency in cooling solar collectors – a review. Renew Sustain Energy Rev 38:348–367

    Article  CAS  Google Scholar 

  • Shan F, Cao L, Fang GY (2013) Dynamic performances modeling of a photovoltaic– thermal collector with water heating in buildings. Energy Build 66:485–494

    Article  Google Scholar 

  • Sharma A, Won LD, Buddhi D, Park JU (2005) Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system. Renew Energy 30:2179–2187

    Article  CAS  Google Scholar 

  • Siahkamari L, Rahimi M, Azimi N, Banibayat M (2019) Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system. Int Commun Heat Mass Transfer 100:60–66

    Article  CAS  Google Scholar 

  • Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83:614–624

    Article  CAS  Google Scholar 

  • Sopian K, Liu HT, Kakac S, Veziroglu TN (2000) Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems. Energy Convers Manage 41:353–365

    Article  CAS  Google Scholar 

  • Subramani N, Suyambazhahan. Sathyamurthy R (2014) Nanofluids for solar collector applications: A Review. Energy Procedia 61:2416–2434

  • Su D, Jia Y, Huang X, Alva G, Tang Y, Fang G (2016) Dynamic performance analysis of photovoltaic – thermal solar collector with dual channels for different fluids 120:13–24

  • Su D, Jia Y, Alva G, Liu L, Fang G (2017) Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Convers Manage 131:79–89

    Article  CAS  Google Scholar 

  • Sun X, Zhang Q, Medina MA, Lee KO (2016) Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid– liquid phase change materials (PCMs). Appl Energy 162:1453–1461

    Article  CAS  Google Scholar 

  • Tian MW, Khetib Y, Yan SR et al (2021) Energy, exergy and economics study of a solar/thermal panel cooled by nanofluid. Case Stud Therm Eng 28:101481. https://doi.org/10.1016/j.csite.2021.101481

    Article  Google Scholar 

  • Tiwari A, Sodha MS, Chandra A, Joshi JC (2006) Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Sol Energy Mater Sol Cells 90(2):175–189

    Article  CAS  Google Scholar 

  • Tiwari A, Sodha MS, Chandra A, Joshi JC (2006) Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Sol Energy Mater Sol Cells 90:175–189

    Article  CAS  Google Scholar 

  • Tiwari GN, Mishra RK, Solanki SC (2011) Photovoltaic modules and their applications: a review on thermal modelling. Appl Energy 88:2287–2304

    Article  Google Scholar 

  • Touafek K, Haddadi M, Malek A (2011) Modeling and experimental validation of a new hybrid photovoltaic thermal collector. IEEE Trans Energy Convers 26:176–183

    Article  Google Scholar 

  • Tripanagnostopoulos Y, Souliotis M, Battisti R, Corrado A (2004) Application aspects of hybrid PVT/air solar systems. EuroSun Freiburg Germany 1:744–753

    Google Scholar 

  • Trp A (2005) An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy 79:648–660

    Article  CAS  Google Scholar 

  • Tyagi H, Phelan P, Prasher R (2009) Predicted efficiency of a low-temperature nanofluid based direct absorption solar collector. J Solar Energy Engg 131:041004

    Article  CAS  Google Scholar 

  • Waelia A, Chaichanb M, Sopiana K, Kazema H, Mahoodd H, Khadome A (2019) Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol Energy 177:178–191

    Article  CAS  Google Scholar 

  • Waqas A, Ji J, Bahadar A, Xu L, Zeshan MM (2018) Thermal management of conventional photovoltaic module using phase change materials-an experimental investigation. Energy Explor Exploit 37(5):1516–1540

    Article  CAS  Google Scholar 

  • Wasfi M, Member S. (2011) Solar energy and photovoltaic systems Cyber journals: multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable and Sustainable Energy (JRSE), February Edition 1–8.

  • Xie H, Wang J, Xi T, Ali F (2002) Thermal conductivity of suspensions containing nanosized alumina particles. Int J Thermophys 91:4568–4572

    CAS  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y (2002) Thermal conductivity of suspensions containing nano sized SiC particles. Int J Thermophys 23:571–580

    Article  CAS  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y, Ali F (2002) Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J Mater Sci Lett 21:1469–1471

    Article  CAS  Google Scholar 

  • Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  CAS  Google Scholar 

  • Zanlorenzi G, Szejka AL, Canciglieri O (2018) Hybrid photovoltaic module for efficiency improvement through an automatic water cooling system: a prototype case study. J Clean Prod 196:535–546

    Article  Google Scholar 

  • Zhao J, Li Z, Ma T (2019) Performance analysis of a photovoltaic panel integrated with phase change material. Energy Procedia 158:1093–1098

    Article  Google Scholar 

  • Zilli BM, Lenz AM, Melegari SN, de Souza D, Secco CE, Nogueira C, Junior OHA, Nadaleti WC, Siqueira JAC, Gurgacz F (2018) Performance and effect of water-cooling on a microgeneration system of photovoltaic solar energy in Paraná, Brazil. J Clean Prod 192:477–485

    Article  Google Scholar 

  • Zondag HA, Vries DW, Helden WGJ, Zolingen RJC, van Steenhoven AA (2003) The yield of different combined PV-thermal collector designs. Sol Energy 74:253–269

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CST U.P. (Council of Science and Technology, Department of Science and Technology, Govt. of U.P.) for giving research grant under CST, UP Engineering Students’ Project Grant Scheme 2019-20 (Project ID-69). We are also thankful to Shiv Nadar University for providing research facilities and environment in the campus.

Funding

CST U.P. (Council of Science and Technology, Department of Science and Technology, Govt. of U.P.) for giving research grant under CST, UP Engineering Students’ Project Grant Scheme 2019–20 (Project ID-69).

Author information

Authors and Affiliations

Authors

Contributions

Sumit Tiwari-conceptualization, formal analysis and investigation, original draft preparation, and review.

Muthukarupan Swaminathan-formal analysis and investigation, and original draft preparation.

Santhosh Eashwar S-formal analysis and investigation, and original draft preparation.

Harender-review and editing, formal analysis, and investigation.

Desh Bandhu Singh-review and editing, formal analysis, and investigation.

Corresponding author

Correspondence to Sumit Tiwari.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Swaminathan, M., S, S.E. et al. Performance enhancement of the photovoltaic system with different cooling methods. Environ Sci Pollut Res 29, 45107–45130 (2022). https://doi.org/10.1007/s11356-022-20330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20330-x

Keywords

Navigation