Skip to main content
Log in

Study of the influence of graphite content on polysulfone-graphite composite membrane properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Techniques such as plasma treatment and electrophilic aromatic substitution are strategies commonly used to increase membrane hydrophilicity. We here suggest the addition of graphite (the contents of 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mass%) in the system composed of polysulfone/N-methyl-2-pyrrolidone/water and, consequently, the formation of a composite membrane as a method to increase membrane hydrophilicity. Polysulfone-graphite membranes were prepared by wet-phase inversion method and were compared to that of pristine polysulfone membrane. From X-ray diffraction and Fourier transform infrared spectroscopy, it was observed that the structures of both starting materials were maintained. Scanning electron microscopy images revealed a cellular morphology of both membranes and the presence of graphite particles in the cross-sectional area. Contact angle measurements showed that Lewis acid-base interactions were favored by graphite addition and membrane hydrophilicity increased by increasing the graphite content except for the membrane prepared from a dispersion containing 3.0 mass% graphite. By increasing the graphite content, the onset temperature of degradation was increased and mass loss was decreased whereas only the membranes with low graphite content presented an increase in glass transition temperature. Finally, from tensile tests, it was noted that the presence of graphite particles resulted in the brittleness of the composite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strathmann H. Membrane separation processes. J Membr Sci. 1981;9:121–89.

    Article  CAS  Google Scholar 

  2. Anadão P. Ciência e tecnologia de membranas. 1st ed. São Paulo: Artliber Editora; 2010.

    Google Scholar 

  3. Cieśla K, Rahier H, Zakrzewska-Trznadel G. Interaction of water with the regenerated cellulose membrane studied by DSC. J Therm Anal Calorim. 2004;77:279–93.

    Article  Google Scholar 

  4. Loeb S, Sourirajan S. High-flow semipermeable membranes for separation of water from saline solutions. Adv Chem Ser. 1962;38:117–32.

    Article  Google Scholar 

  5. Strathmann H. Development of new membranes. Desalination. 1980;35:39–58.

    Article  CAS  Google Scholar 

  6. Pesek SC, Koros WJ. Aqueous quenched asymetric polysulfone membranes prepared by dry/wet phase separation. J Membr Sci. 1993;81:71–88.

    Article  CAS  Google Scholar 

  7. Khansary MA, Marjani A, Shirazian S. On the search of rigorous thermo-kinetic model for wet phase inversion technique. J Membr Sci. 2017;538:18–33.

    Article  CAS  Google Scholar 

  8. Durmaz EN, Çulfaz-Emecen PZ. Cellulose-based membranes via phase inversion using [EMIM]OAc-DMSO mixtures as solvent. Chem Eng Sci. 2018;178:93–103.

    Article  CAS  Google Scholar 

  9. Bhran A, Shoaib A, Elsadeq D, El-gendi A, Abdallah H. Preparation of PVC/PVP composite polymer membranes via phase inversion process for water treatment purposes. Chin J Chem Eng. 2018;26:715–22.

    Article  Google Scholar 

  10. Munirasu S, Banat F, Durrani AA, Haija MA. Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation. Desalination. 2017;417:77–86.

    Article  CAS  Google Scholar 

  11. Garcia-Ivars J, Wang-Xu W, Iborra-Clar M-I. Application of post-consumer recycled high-impact polystyrene in the preparation of phase-inversion membranes for low-pressure membrane processes. Sep Purif Technol. 2017;175:340–51.

    Article  CAS  Google Scholar 

  12. Altena FW, Smolders CA. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a non-solvent. Macromolecules. 1982;15:1491–7.

    Article  CAS  Google Scholar 

  13. Yip Y, McHugh AJ. Modeling and simulation of nonsolvent vapor-induced phase separation. J Membr Sci. 2006;271:163–76.

    Article  CAS  Google Scholar 

  14. Asghar MR, Zhang Y, Wu A, Yan X, Shen S, Ke C, Zhang J. Preparation of microporous cellulose/poly(vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method. J Power Sources. 2018;379:197–205.

    Article  CAS  Google Scholar 

  15. Anadão P, Wiebeck H. Membrane Preparation by Nonsolvent-Induced Phase Inversion: Polymers on. In: Mishra M, editors. Encyclopedia of Polymer Applications (EPA). New York: Taylor and Francis Group, in press.

  16. Hang YS, Kim HJ, Kim UY. Asymmetric membrane formation via immersion precipitation method. I. Kinetic effect. J Membr Sci. 1991;60:219–32.

    Article  Google Scholar 

  17. Barzin J, Sadatnia B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. J Membr Sci. 2008;325:92–7.

    Article  CAS  Google Scholar 

  18. Mukherjee GS. Calorimetric characterization of membrane materials based on polyvinyl alcohol. J Therm Anal Calorim. 2009;96:21–5.

    Article  CAS  Google Scholar 

  19. Leite AMD, Maia LF, Paz PA, Araújo EM, Lira HL. Thermal properties from membrane of polyamide 6/montmorillonite clay nanocomposites obtained by immersion precipitation method. J Therm Anal Calorim. 2009;97:577–80.

    Article  CAS  Google Scholar 

  20. Vasile C, Costea C, Pascu MC, Warshawsky A. Thermoxidative decomposition of some polysulfones under dynamic conditions of heating. J Therm Anal Calorim. 1998;52:569–79.

    Article  CAS  Google Scholar 

  21. Salvio Neto H, de Araujo GLB, dos Santos LL, Cosentino IC, Carvalho FMS, Matos JR. Inclusion of prednicarbate in the SBA-15 silica. J Therm Anal Calorim. 2016;123:2297–305.

    Article  CAS  Google Scholar 

  22. Wang H, Wang W, Wang L, Zhao B, Zhang Z, Xia X, Yang H, Xue Y, Chang N. Enhancement of hydrophilicity and the resistance for irreversible fouling of polysulfone (PSF) membrane immobilized with graphene oxide (GO) through chloromethylated and quaternized reaction. Chem Eng J. 2018;334:2068–78.

    Article  CAS  Google Scholar 

  23. Wavhal DS, Fisher ER. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination. 2005;172:189–205.

    Article  CAS  Google Scholar 

  24. Guan R, Zou H, Lu D, Gong C, Liu Y. Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J. 2005;41:1554–60.

    Article  CAS  Google Scholar 

  25. Matsumoto Y, Sudoh M, Suzuki Y. Preparation of composite UF membranes of sulfonated polysulfone coated on ceramics. J Membr Sci. 1999;158:55–62.

    Article  CAS  Google Scholar 

  26. Molnár G, Botvay A, Pöppl L, Torkos KI, Borossay J, Máték A, Török T. Thermal degradation of chemically modified polysulfones. Polym Degrad Stab. 2005;89:410–7.

    Article  Google Scholar 

  27. Hajibeygi M, Maleki M, Shabanian M, Ducos F, Vahabi H. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl Surf Sci. 2018;439:1163–79.

    Article  CAS  Google Scholar 

  28. Panda SR, De S. Preparation, characterization and performance of ZnCl2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membranes. Desalination. 2014;347:52–65.

    Article  CAS  Google Scholar 

  29. Furuya K, Hafuka A, Kuroiwa M, Sato H, Watana Y, Yamamura H. Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration. Water Res. 2017;124:521–6.

    Article  CAS  Google Scholar 

  30. Guillotin M, Lemoyne C, Noel C, Monnerie L. Physicochemical processes occurring during the formation of cellulose diacetate membranes. Research of criteria for optimizing membrane performance. IV. Cellulose diacetate-acetone-organic additive casting solutions. Desalination. 1977;21:165–81.

    Article  CAS  Google Scholar 

  31. Xie P, de Lannoy C-F, Ma J, Wang Z, Wang S, Li J, Wiesner MR. Improved chlorine tolerance of a polyvinyl pyrrolidone-polysulfone membrane enabled by carboxylated carbon nanotubes. Water Res. 2016;104:497–506.

    Article  CAS  Google Scholar 

  32. Bildyukevich AV, Plisko TV, Liubimova AS, Volkov VV, Usosky VV. Hydrophilization of polysulfone hollow fiber membranes via addition of polyvinylpyrrolidone to the bore fluid. J Membr Sci. 2017;524:537–49.

    Article  CAS  Google Scholar 

  33. Kim SR, Lee KH, Jhon MS. The effect of ZnCl2 on the formation of polysulfone membrane. J Membr Sci. 1996;119:59–64.

    Article  CAS  Google Scholar 

  34. Lin D-J, Chang C-L, Huang F-M, Cheng L-P. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system. Polymer. 2003;44:413–22.

    Article  CAS  Google Scholar 

  35. Yu Y, Yu L, Wang C, Chen JP. An innovative yttrium nanoparticles/PVA modified PSF membrane aiming at decontamination of arsenate. J Colloid Interface Sci., in press.

  36. Anadão P, Sato LF, Wiebeck H, Diaz FRV. Montmorillonite as a component of polysulfone nanocomposite membranes. Appl Clay Sci. 2010;48:127–32.

    Article  Google Scholar 

  37. Anadão P, Sato LF, Montes RR, De Santis HS. Polysulphone/montmorillonite nanocomposite membranes: effect of clay addition and polysulphone molecular weight on the membrane properties. J Membr Sci. 2014;455:187–99.

    Article  Google Scholar 

  38. Anadão P, Montes RR, Larocca NM, Pessan LA. Influence of the clay content and the polysulfone molar mass on nanocomposite membrane properties. Appl Surf Sci. 2013;275:110–20.

    Article  Google Scholar 

  39. Aerts P, Kuypers S, Genne I, Leysen R, Mewis J, Vankelecom IFJ, Jacobs PA. Polysulfone-ZrO2 surface interactions. The influence on formation, morphology and properties of Zirfon-membranes. J Phys Chem B. 2006;110:7425–30.

    Article  CAS  Google Scholar 

  40. Ferrando F, Torras C, Garcia-Valls R, Paltakari J. Performance, morphology and tensile characterization of activated carbon composite membranes for the synthesis of enzyme membrane reactors. J Membr Sci. 2006;282:149–61.

    Article  Google Scholar 

  41. Lu Y-H, Cao Y, Lu Y-W, Yang T. Thermal stability and lifetime of [AMIM]Cl-PFSA composite membranes. J Therm Anal Calorim. 2017;128:1601–15.

    Article  CAS  Google Scholar 

  42. Ke H. Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes. J Therm Anal Calorim. 2017;129:1533–45.

    Article  CAS  Google Scholar 

  43. Fu S-H, Feng X-Q, Lauke B, Mai Y-M. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng. 2008;39:933–61.

    Article  Google Scholar 

  44. Wen R, Jia P, Huang Z, Fang M, Liu Y, Wu X, Min X, Gao W. Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. J Therm Anal Calorim. 2018;132:1753–61.

    Article  CAS  Google Scholar 

  45. Sun Q, Yuan Y. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim. 2017;130:1741–9.

    Article  CAS  Google Scholar 

  46. Efe GC, Ozaydin F, Ucisik H, Bindal C, Liang H. Production of ultra-high molecular weight polyethylene-grafite composite films by gelation/crystallization. J Therm Anal Calorim. 2016;125:1659–65.

    Article  Google Scholar 

  47. Petrini M, Ferrante M, Spoto G. Characterization of a bulk-fill resin-based composite by thermal analysis. J Therm Anal Calorim. 2016;123:2329–35.

    Article  CAS  Google Scholar 

  48. Li M, Chen Y, Wu L, Zhang Z, Mai K. A novel polypropylene composite filled by kaolin particles with β-nucleation. J. Therm. Anal. Calorim. in press.

  49. Zhao P, Guo C, Li L. Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate. J. Therm. Anal. Calorim. in press.

  50. Ke H, Pang Z, Peng B, Wang J, Cai Y, Huang F, Wei Q. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver. J Therm Anal Calorim. 2016;123:1293–307.

    Article  CAS  Google Scholar 

  51. Wu B, Fu W, Kong B, Hu K, Zhou C, Lei J. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim. 2018;132:907–17.

    Article  CAS  Google Scholar 

  52. Zhang F, Li Q, Liu Y, Zhang S, Wu C, Guo W. Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim. 2016;123:431–7.

    Article  CAS  Google Scholar 

  53. Li Z, Bai L, Zheng J. Effect of π–π interaction between carbon nanotubes and phenyl groups on the thermal stability of silicone rubber. J Therm Anal Calorim. 2018;131:2503–12.

    Article  CAS  Google Scholar 

  54. Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska S. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim. 2016;123:283–91.

    Article  CAS  Google Scholar 

  55. Bassyouni M, Ali I, Abdel-hamid SMS. Study of thermo-kinetic properties of graphite micro-platelet-enriched vinyl ester composites. J Therm Anal Calorim. 2018;131:1055–65.

    Article  CAS  Google Scholar 

  56. Imiela M, Anyszka R, Bieliński DM, Pędzich Z, Zarzecka-Napierała M, Szumera M. Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber. J Therm Anal Calorim. 2016;124:197–203.

    Article  CAS  Google Scholar 

  57. Agarwal H, Yadav G, Jaiswa G. Effect of nanoclay and barium sulfate nanoparticles on the thermal and morphological properties of polyvinylidene fluoride nanocomposites. J Therm Anal Calorim. 2017;129:1471–9.

    Article  CAS  Google Scholar 

  58. Layachi A, Frihi D, Satha H, Seguela S, Gherib S. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J Therm Anal Calorim. 2016;124:1319–29.

    Article  CAS  Google Scholar 

  59. Cheng JJ, Zhou F-B. Influence of expandable graphite on flame retardancy and mechanical properties of organic–inorganic hybrid material based on sodium silicate and polyisocyanate. J Therm Anal Calorim. 2016;126:1417–26.

    Article  CAS  Google Scholar 

  60. Cavallaro G, De Lisi R, Lazzara G, Milioto S. Polyethylene glycol/clay nanotubes composites. J Therm Anal Calorim. 2013;112:383–9.

    Article  CAS  Google Scholar 

  61. Wijmans JG, Baaij JPB, Smolders CA. The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. J Membr Sci. 1983;14:263–74.

    Article  CAS  Google Scholar 

  62. Lapointe J-F, Gauthier SF, Pouliot Y, Bouchard C. Characterization of interactions between β-lactoglobulin tryptic peptides and a nanofiltration membrane: impact on the surface membrane properties as determined by contact angle measurements. J Membr Sci. 2005;261:36–48.

    Article  CAS  Google Scholar 

  63. Du R, Chakma A, Feng X. Poly(N, N-dimethylaminoethylmethacrylate)/polysulfone composite membranes for gas separation. J Membr Sci. 2006;279:76–85.

    Article  CAS  Google Scholar 

  64. Rafizah WAW, Ismail AF. Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane. J Membr Sci. 2008;307:53–61.

    Article  CAS  Google Scholar 

  65. Montes-Morán MA, Suárez D, Menéndez JA, Fuente E. On the nature of basic sites on carbon surfaces: an overview. Carbon. 2004;42:1219–24.

    Article  Google Scholar 

  66. Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM. Study of oxygen-containing groups in series of graphite oxides: physical and chemical characterization. Carbon. 1995;33:1585–92.

    Article  CAS  Google Scholar 

  67. Mohr JM, Paul DR, Pinnau I, Koros WJ. Surface fluorination of polysulfone asymmetric membranes and films. J Membr Sci. 1991;56:77–98.

    Article  CAS  Google Scholar 

  68. Anadão P, Sato LF, Wiebeck H, Díaz FRV. Polysulfone activated carbon composite membranes. Mater Sci Forum. 2010;660–661:1081–6.

    Article  Google Scholar 

  69. Yasmin A, Daniel IM. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer. 2004;45:8211–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Priscila Anadão would like to acknowledge Solvay Advanced Polymers for providing polysulfone Udel® P-3500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Anadão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anadão, P., Sato, L.F. & Wiebeck, H. Study of the influence of graphite content on polysulfone-graphite composite membrane properties. J Therm Anal Calorim 134, 1647–1656 (2018). https://doi.org/10.1007/s10973-018-7700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7700-2

Keywords

Navigation