Skip to main content
Log in

Crystal structure, magnetic and heat capacity properties of a new chiral mononuclear iron(II) compound

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new chiral mononuclear iron(II) compound, formulated as {[Fe(ACBP)3]·(ClO4)} (1, ACBP = (S,S)-3,3′-(1,2-dimethylpropanedioxy)-2,2′-bipyridine), has been synthesized and structurally characterized. The magnetic study revealed that compound 1 possesses antiferromagnetic exchange interactions between Fe(II) ions through the hydrogen bonds. The low-temperature heat capacity of compound 1 was measured in the temperature range from 1.9 to 300 K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). Additionally, the thermodynamic functions in the experimental temperature range have been derived by fitting the heat capacity data to a series of theoretical and empirical models. The standard molar heat capacity, entropy and enthalpy of compound 1 at 298.15 K and 0.1 MPa have been determined to be \(C_{\text{p,m}}^{\text{o}}\) = (1036.9 ± 10.4) J mol−1 K−1, \(S_{\text{m}}^{\text{o}}\) = (1059.6 ± 10.6) J mol−1 K−1 and \(H_{\text{m}}^{\text{o}}\) = (160.29 ± 1.60) kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu Z, Zhen Z, Jiang JH, Shen GL, Yu RQ. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J Am Chem Soc. 2009;131:12325–32.

    Article  CAS  PubMed  Google Scholar 

  2. van Geer J, Hanraads JAJ, Lupton RA, et al. The art of writing a scientific article. J Sci Commun. 2010;163:51–9.

    Google Scholar 

  3. Strunk W Jr, White EB. The elements of style. 4th ed. New York: Longman; 2000.

    Google Scholar 

  4. Mettam GR, Adams LB. How to prepare an electronic version of your article. In: Jones BS, Smith RZ, editors. Introduction to the electronic age. New York: E-Publishing Inc.; 2009. p. 281–304.

    Google Scholar 

  5. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.

    Article  CAS  PubMed  Google Scholar 

  6. Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev. 2012;112:1196–231.

    Article  CAS  PubMed  Google Scholar 

  7. Milani B, Alessio E, Mestroni G, Zangrando E, Randaccio L, Consiglio G. New atropisomeric bidentate nitrogen-donor compounds as potential stereocontrollers in mild CO–styrene copolymerisation catalysed by palladium(II) salts. J Chem Soc Dalton Trans. 1996;1021–9.

  8. Yu WY, Fung WH, Zhu JL, Cheung KK, Ho KK, Che CM. Chiral ruthenium-oxo complexes for enantioselective epoxidation of trans-stilbene. J Chin Chem Soc. 1999;46:341–9.

    Article  CAS  Google Scholar 

  9. Bringmann G, Gulder T, Gulder TAM, Breuning M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem Rev. 2011;111:563–639.

    Article  CAS  PubMed  Google Scholar 

  10. Gaspar B, Ksenofontov V, Seredyuk M, Gütlich P. Multifunctionality in spin crossover materials. Coord Chem Rev. 2005;249:2661–76.

    Article  CAS  Google Scholar 

  11. Rikken GLJA, Raupach E. Observation of magneto-chiral dichroism. Nature. 1997;390:493–4.

    Article  CAS  Google Scholar 

  12. Fu DW, Zhang W, Cai HL, Zhang Y, Ge JZ, Xiong RG, Huang SP, Takayoshi N. A multiferroic perdeutero metal–organic framework. Angew Chem Int Ed. 2011;50:11947–51.

    Article  CAS  Google Scholar 

  13. Liu CM, Xiong RG, Zhang DQ, Zhu DB. Nanoscale homochiral C3-symmetric mixed-valence manganese cluster complexes with both ferromagnetic and ferroelectric properties. J Am Chem Soc. 2010;132:4044–5.

    Article  CAS  PubMed  Google Scholar 

  14. von Zelewsky A, Knof U. Predetermined chirality at metal centers. Angew Chem Int Ed. 1999;38:302–22.

    Article  Google Scholar 

  15. Pérez-García L, Amabilino DB. Spontaneous resolution under supramolecular control. Chem Soc Rev. 2002;3:342–56.

    Article  Google Scholar 

  16. Liu Y, Xuan WM, Cui Y. Engineering homochiral metal–organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater. 2010;22:4112–35.

    Article  CAS  PubMed  Google Scholar 

  17. Kwong HL, Yeung HL, Yeung CT, Lee WS, Lee CS, Wong WL. Bioinorganic chemistry of copper coordination to α-synuclein: relevance to Parkinson’s disease. Coord Chem Rev. 2007;251:2188–201.

    Article  CAS  Google Scholar 

  18. Gao X, Wu B, Huang WX, Chen MW, Zhou YG. Enantioselective palladium-catalyzed C–H functionalization of indoles using an axially chiral 2,2′-bipyridine ligand. Angew Chem Int Ed. 2015;54:11956–60.

    Article  CAS  Google Scholar 

  19. Sheldrick GM. SHELXS-97. Göttingen: University of Göttingen; 1990.

    Google Scholar 

  20. Shi Q, Boerio-Goates J, Woodfield BF. An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn. 2011;43:1263–9.

    Article  CAS  Google Scholar 

  21. Shi Q, Claine LS, Juliana BG, Woodfield BF. Accurate heat capacity measurements on powdered samples using a quantum design physical property measurement system. J Chem Thermodyn. 2010;42:1107–15.

    Article  CAS  Google Scholar 

  22. Dai RX, Zhang SH, Yin N, Tan ZC, Shi Q. Low-temperature heat capacity and standard thermodynamic functions of b-d-(-)-arabinose (C5H10O5). J Chem Thermodyn. 2016;92:60–5.

    Article  CAS  Google Scholar 

  23. Gao EQ, Yue YF, Bai SQ, He Z, Yan CH. From achiral ligands to chiral coordination polymers: spontaneous resolution, weak ferromagnetism, and topological ferrimagnetism. J Am Chem Soc. 2004;126:1419–29.

    Article  CAS  PubMed  Google Scholar 

  24. Ni ZH, Kou HZ, Zhang LF, Ge CH, Cui AL, Wang RJ. Li Yd, Sato O. [MnIII(salen)]6[FeIII(bpmb)(CN)2]6·7H2O: a cyanide-bridged nanosized molecular wheel. Angew Chem Int Ed. 2005;44:7742–5.

    Article  CAS  Google Scholar 

  25. Lashley JC, Hundley MF, Migliori A, Sarrao JL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, Thoma DJ, Smith JL, Boerio-Goates J, Woodfield BF, Stewart GR, Fisher RA, Phillips NE. Critical examination of heat capacity measurements made on a quantum design physical property measurement system. Cryogenics. 2003;43:369–78.

    Article  CAS  Google Scholar 

  26. da Ribeiro SMAV, da Ribeiro SMMC, Lobo Ferreira AIMC, Shi Q, Woodfield BF, Goldberg RNG. Thermochemistry of α-D-xylose (cr). J Chem Thermodyn. 2013;58:20–8.

    Article  CAS  Google Scholar 

  27. Woodfield BF, Shapiro JL, Stevens R, Boerio-Goates J, Putnam RL, Helean KB, Navrotsky A. Molar heat capacity and thermodynamic functions for CaTiO3. J Chem Thermodyn. 1999;31:1573–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly indebted to the Natural Science Foundation of China for financial support of this work (No. 21473198 and 21701167). Quan Shi would like to thank Hundred-Talent Program founded by Chinese Academy of Sciences. The authors express their thanks to Dr. Yan Liu for help in the sample preparation of the chiral ligand ACBP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Liu, X., Yin, N. et al. Crystal structure, magnetic and heat capacity properties of a new chiral mononuclear iron(II) compound. J Therm Anal Calorim 135, 3421–3428 (2019). https://doi.org/10.1007/s10973-018-7619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7619-7

Keywords

Navigation