Skip to main content
Log in

Determination of heat capacities and thermodynamic properties of Al4(OH)2(OCH3)4(H2N-BDC)3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacities of one–three-dimensional metal–organic frameworks Al4(OH)2(OCH3)4(H2N-BDC)3 (CAU-1) were measured by temperature-modulated differential scanning calorimetry (TMDSC) over the temperature range from 213 to 393 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The fundamental thermodynamic parameters such as entropy and enthalpy relative to 298.15 K were calculated based on the experimentally determined molar heat capacities. The compound was characterized by elemental analysis, powder XRD, FT-IR spectrum. Moreover, the thermal stabilities and decomposition mechanisms of hydrated phase and dehydrated phase of CAU-1 were investigated by thermogravimetric spectrometer in the temperature range 298–1023 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stock N, Biswas S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112(2):933–69. https://doi.org/10.1021/cr200304e.

    Article  CAS  PubMed  Google Scholar 

  2. Hosny NM. Solvothermal synthesis, thermal and adsorption properties of metal–organic frameworks Zn and CoZn(DPB). J Therm Anal Calorim. 2015;122(1):89–95. https://doi.org/10.1007/s10973-015-4721-y.

    Article  CAS  Google Scholar 

  3. Reinsch H. “Green” synthesis of metal–organic frameworks. Eur J Inorg Chem. 2016;2016(27):4290–9. https://doi.org/10.1002/ejic.201600286.

    Article  CAS  Google Scholar 

  4. Hosny NM, Al-Hussaini AS, Nowesser N, Zoromba MS. Effect of inclusion of some transition metal ions and use of the doped polymer in synthesizing α-Fe2O3 nanoparticles via thermal decomposition rout. J Therm Anal Calorim. 2016;124(1):287–93. https://doi.org/10.1007/s10973-015-5121-z.

    Article  CAS  Google Scholar 

  5. He Y, Zhou W, Qian G, Chen B. Methane storage in metal–organic frameworks. Chem Soc Rev. 2014;43(16):5657–78. https://doi.org/10.1039/C4CS00032C.

    Article  CAS  PubMed  Google Scholar 

  6. Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev. 2015;44(8):2421–54. https://doi.org/10.1039/C4CS00437J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andirova D, Cogswell CF, Lei Y, Choi S. Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Microporous Mesoporous Mater. 2016;219:276–305. https://doi.org/10.1016/j.micromeso.2015.07.029.

    Article  CAS  Google Scholar 

  8. Lin Y, Kong C, Zhang Q, Chen L. Metal–organic frameworks for carbon dioxide capture and methane storage. Adv Energy Mater. 2017;7(4):1601296. https://doi.org/10.1002/aenm.201601296.

    Article  CAS  Google Scholar 

  9. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev. 2014;43(16):6011–61. https://doi.org/10.1039/C4CS00094C.

    Article  CAS  PubMed  Google Scholar 

  10. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev. 2015;44(19):6804–49. https://doi.org/10.1039/C4CS00395K.

    Article  CAS  PubMed  Google Scholar 

  11. Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43(16):5815–40. https://doi.org/10.1039/C4CS00010B.

    Article  CAS  PubMed  Google Scholar 

  12. Qiu S, Xue M, Zhu G. metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev. 2014;43(16):6116–40. https://doi.org/10.1039/C4CS00159A.

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee D, Cairns AJ, Liu J, Motkuri RK, Nune SK, Fernandez CA, et al. Potential of metal–organic frameworks for separation of xenon and krypton. Acc Chem Res. 2015;48(2):211–9. https://doi.org/10.1021/ar5003126.

    Article  CAS  PubMed  Google Scholar 

  14. He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079–108. https://doi.org/10.1021/acs.chemrev.5b00125.

    Article  CAS  PubMed  Google Scholar 

  15. Wunderlich B. The tribulations and successes on the road from DSC to TMDSC in the 20th century the prospects for the 21st century. J Therm Anal Calorim. 2004;78(1):7–31. https://doi.org/10.1023/b:jtan.0000042150.03836.27.

    Article  CAS  Google Scholar 

  16. Song LF, Jiao CL, Jiang CH, Zhang JA, Sun LX, Xu F, et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. 2011;103(1):365–72. https://doi.org/10.1007/s10973-010-0777-x.

    Article  CAS  Google Scholar 

  17. Androsch R. Heat capacity measurements using temperature-modulated heat flux DSC with close control of the heater temperature. J Therm Anal Calorim. 2000;61(1):75–89. https://doi.org/10.1023/a:1010104406353.

    Article  CAS  Google Scholar 

  18. Wunderlich B, Jin YM, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93. https://doi.org/10.1016/s0040-6031(94)85214-6.

    Article  CAS  Google Scholar 

  19. Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402(1–2):91–8.

    Article  CAS  Google Scholar 

  20. Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85(1):179–87. https://doi.org/10.1007/s10973-005-7347-7.

    Article  CAS  Google Scholar 

  21. Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Ferey G, et al. Al4(OH)2(OCH3)4(H2N-bdc)3·xH2O: a 12-connected porous metal–organic framework with an unprecedented aluminum-containing brick. Angew Chem Int Ed. 2009;48(28):5163–6. https://doi.org/10.1002/anie.200901409.

    Article  CAS  Google Scholar 

  22. Schlegel M-C, Tobbens D, Svetogorov R, Kruger M, Stock N, Reinsch H, et al. Conformation-controlled hydrogen storage in the CAU-1 metal–organic framework. PCCP. 2016;18(42):29258–67. https://doi.org/10.1039/c6cp05310f.

    Article  CAS  PubMed  Google Scholar 

  23. Yin H, Wang J, Xie Z, Yang J, Bai J, Lu J, et al. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2–N2 separation. Chem Commun. 2014;50(28):3699–701. https://doi.org/10.1039/c4cc00068d.

    Article  CAS  Google Scholar 

  24. Xie L, Liu D, Huang H, Yang Q, Zhong C. Efficient capture of nitrobenzene from waste water using metal–organic frameworks. Chem Eng J. 2014;246:142–9. https://doi.org/10.1016/j.cej.2014.02.070.

    Article  CAS  Google Scholar 

  25. Hartmann M, Fischer M. Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 2012;164:38–43. https://doi.org/10.1016/j.micromeso.2012.06.044.

    Article  CAS  Google Scholar 

  26. Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22(6):1441–53.

    Article  CAS  Google Scholar 

  27. Ginnings DC, Furukawa GT. Heat capacity standards for the range 14 to 1200 K. J Am Chem Soc. 1953;75(3):522–7. https://doi.org/10.1021/ja01099a004.

    Article  CAS  Google Scholar 

  28. Jiang C-H, Song L-F, Jiao C-L, Zhang J, Sun L-X, Xu F, et al. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103(3):1095–103. https://doi.org/10.1007/s10973-010-1197-7.

    Article  CAS  Google Scholar 

  29. Song L-F, Jiao C-L, Jiang C-H, Zhang J, Sun L-X, Xu F, et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. 2011;103(1):365–72. https://doi.org/10.1007/s10973-010-0777-x.

    Article  CAS  Google Scholar 

  30. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040–2. https://doi.org/10.1126/science.1116275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21503129, 61571062, 21572126, 21675109) and Education Department of Henan Province (No. 15A150073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Liu or Lan-Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, LX., Liu, LT. et al. Determination of heat capacities and thermodynamic properties of Al4(OH)2(OCH3)4(H2N-BDC)3. J Therm Anal Calorim 135, 3233–3239 (2019). https://doi.org/10.1007/s10973-018-7608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7608-x

Keywords

Navigation