Skip to main content
Log in

Heat capacities and thermodynamic properties of MgNDC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One-three-dimensional metal-organic frameworks Mg1.5(C12H6O4)1.5(C3H7NO)2 (MgNDC) has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgNDC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 205 to 470 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgNDC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgNDC was further investigated through thermogravimetry (TG)–mass spectrometer (MS). Three stages of mass loss were observed in the TG curve. TG–MS curve indicated that the oxidative degradation products of MgNDC are mainly H2O, CO2, NO, and NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev. 2009;38:1294–314.

    Article  CAS  Google Scholar 

  2. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.

    Article  CAS  Google Scholar 

  3. Liu YY, Zhang J, Xu F, Sun LX, Zhang T, You WS, et al. Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Cryst Growth Des. 2008;8:3127–9.

    Article  CAS  Google Scholar 

  4. Bae YS, Mulfort KL, Frost H, Ryan P, Punnathanam S, Broadbelt LJ, et al. Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. Langmuir. 2008;24:8592–8.

    Article  CAS  Google Scholar 

  5. Rieter WJ, Taylor KML, An HY, Lin WL, Lin WB. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128:9024–5.

    Article  CAS  Google Scholar 

  6. Contreras R, Flores-Parra A, Mijangos E, Tellez F, Lopez-Sandoval H, Barba-Behrens N. From mono to polydentate azole and benzazole derivatives, versatile ligands for main group and transition metal atoms. Coord Chem Rev. 2009;253:1979–99.

    Article  CAS  Google Scholar 

  7. Banerjee D, Kim SJ, Parise JB. Lithium based metal-organic framework with exceptional stability. Cryst Growth Des. 2009;9:2500–3.

    Article  CAS  Google Scholar 

  8. Liu YY, Zhang H, Sun LX, Xu F, You WS, Zhao Y. Solvothermal synthesis and characterization of a lithium coordination polymer possessing a highly stable 3D network structure. Inorg Chem Commun. 2008;11:396–9.

    Article  CAS  Google Scholar 

  9. Chen SP, Yang Q, Gao S. Syntheses, characterization and thermal properties of lanthanide complexes with 2-mercaptonicotinic acid. J Therm Anal Calorim. 2009;95:685–9.

    Article  CAS  Google Scholar 

  10. Leitner J, Ruzicka K, Sedmidubsky D, Svoboda P. Heat capacity, enthalpy and entropy of calcium niobates. J Therm Anal Calorim. 2009;95:397–402.

    Article  CAS  Google Scholar 

  11. Markin AV, Ruchenin VA, Smirnova NN, Gorina EA, Titova SN, Domrachev GA. Heat capacity and standard thermodynamic functions of a fullerene complex, ((CH3)(3)Si)(12)C-60, over the range from T → 0 K to T = 350 K. J Chem Eng Data. 2010;55:871–5.

    Article  CAS  Google Scholar 

  12. Dinca M, Long JR. Strong H-2 binding and selective gas adsorption within the microporous coordination solid Mg-3(O2C–C10H6–CO2)(3). J Am Chem Soc. 2005;127:9376–7.

    Article  CAS  Google Scholar 

  13. Wunderlich B, Jin YM, Boller A. Mathematical-description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93.

    Article  CAS  Google Scholar 

  14. Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85:179–87.

    Article  CAS  Google Scholar 

  15. Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402:91–8.

    CAS  Google Scholar 

  16. Chau J, Garlicka I, Wolf C, Teh J. Modulated DSC as a tool for polyethylene structure characterization. J Therm Anal Calorim. 2007;90:713–9.

    Article  CAS  Google Scholar 

  17. Qiu SJ, Chu HL, Zhang J, Qi YN, Sun LX, Xu F. Heat capacities and thermodynamic properties of CoPc and CoTMPP. J Therm Anal Calorim. 2008;91:841–8.

    Article  CAS  Google Scholar 

  18. Archer DG. Thermodynamic properties of synthetic sapphire (Alpha-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

  19. Ginnings DC, Furukawa GT. Heat capacity standards for the range 14-degrees-K to 1200-degrees-K. J Am Chem Soc. 1953;75:522–7.

    Article  CAS  Google Scholar 

  20. Sheldrick GM. SHELX97, Program for crystal structure refinement. Germany: Göttingen University; 1997.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundation of China (No. 20833009, 20873148, 20903095, 50901070 and U0734005), the National Basic Research Program (973 program) of China (2010CB631303), IUPAC (Project No. 2008-006-3-100), and the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ10-1Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Xian Sun or Fen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, LF., Jiao, CL., Jiang, CH. et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim 103, 365–372 (2011). https://doi.org/10.1007/s10973-010-0777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0777-x

Keywords

Navigation