Skip to main content
Log in

Determination of adsorption heat of two boron-containing microporous materials in some organic solvents by microcalorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Microporous materials have adsorptive property because of their pore structures. In this paper, the adsorption heat of two boron-containing microporous materials for M2[Ga(B5O10)]·4H2O (M = K, Rb) in some organic solvents was measured at 298.15 K by using microcalorimeter. The results indicate that the larger the pore size, the higher is the heat of adsorption and the higher is the adsorption capacity. In addition, the thermokinetics of adsorption process of K2[Ga(B5O10)]·4H2O in methanol was also studied. Applying thermokinetic model, thermokinetic parameters including rate constants k, reaction order n, activation energy Ea, and pre-exponential factor A for the adsorption process were simultaneously acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheetham A, Ferey K, Loiseau GT. Open-framework inorganic materials. Angew Chem Int Ed. 1999;38:3268–92.

    Article  CAS  Google Scholar 

  2. Liu ZH, Yang P, Li P. K2[Ga(B5O10)]·4H2O: the first chiral zeolite-like galloborate with large odd 11-ring channels. Inorg Chem. 2007;46:2965–7.

    Article  CAS  Google Scholar 

  3. Li SY, Yang P, Liu ZH. Synthesis, characterization, and thermochemical properties of a microporous crystal material for Rb2[Ga(B5O10)]·4H2O. J Chem Eng Data. 2012;57:1964–9.

    Article  CAS  Google Scholar 

  4. Navrotsky A, Trofymluk O, Levchenko AA. Thermochemistry of microporous and mesoporous materials. Chem Rev. 2009;109:3885–902.

    Article  CAS  Google Scholar 

  5. Huang PP, Zhao JJ, Liu ZH. Standard molar enthalpies of formation for a series of microporous crystals of Na2[MIIB3P2O11(OH)]·0.67H2O (MII = Mg, Mn, Fe Co, Ni, Cu, Zn). J Chem Thermodyn. 2012;55:213–7.

    Article  CAS  Google Scholar 

  6. Lv Y, Li N, Tang M, Liu ZH. Thermodynamic properties of microporous crystals for two hydrated aluminoborates, K2[Al(B5O10)]·4H2O and (NH4)2[Al(B5O10)]·4H2O. J Chem Thermodyn. 2013;58:129–33.

    Article  CAS  Google Scholar 

  7. Kang QY, Song Q, Li SY, Liu ZH. Thermodynamic properties of microporous materials for two borophosphates, K[ZnBP2O8] and NH4[ZnBP2O8]. J Chem Thermodyn. 2014;69:43–7.

    Article  CAS  Google Scholar 

  8. Liang P, Kang QY, Du L, Liu ZH. Thermochemical properties for a series of microporous borophosphates of MI[ZnBP2O8] (MI = Na, K, Rb, Cs). J Chem Thermodyn. 2014;76:24–8.

    Article  CAS  Google Scholar 

  9. Duh YS, Kao CS, William Lee WL. Chemical kinetics on thermal decompositions of di-tert-butyl peroxide studied by calorimetry. J Therm Anal Calorim. 2017;127:1071–87.

    Article  CAS  Google Scholar 

  10. Aghili S, Panjepour M, Meratian M. Kinetic analysis of formation of boron trioxide from thermal decomposition of boric acid under non-isothermal conditions. J Therm Anal Calorim. 2018;131:2443–55.

    Article  CAS  Google Scholar 

  11. Erceg M, Krešić I, Jakić M, Andričić B. Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2017;127:789–97.

    Article  CAS  Google Scholar 

  12. Mateescu M, Budiul M, Albu P, Vlase G, Vlase T. Thermal behavior and kinetic study of degradation for adamantan-2-one versus memantine hydrochloride. J Therm Anal Calorim. 2017;130:391–6.

    Article  CAS  Google Scholar 

  13. Huang AC, Chuang YK, Huang CF, Shu CM. Thermokinetic analysis of the stability of malic and salicylic acids in cosmeceutical formulations containing metal oxides. J Therm Anal Calorim. 2018;132:165–72.

    Article  CAS  Google Scholar 

  14. Yang HC, Lee SY, Choi YC, Yang IH, Chung DY. Thermokinetic analysis of spent ion-exchange resins for the optimization of carbonization reactor condition. J Therm Anal Calorim. 2017;127:587–95.

    Article  CAS  Google Scholar 

  15. Ji M, Liu MY, Gao SL, Shi QZ. A new microcalorimeter for measuring thermal effects. Instrum Sci Technol. 2001;29:53–7.

    Article  CAS  Google Scholar 

  16. Li LQ, Song Q, Li P, Huang HS, Liu ZH. Synthesis, characterization, and thermochemical property of a novel mixed alkali metal borate: NaCs[B10O14(OH)4]. J Therm Anal Calorim. 2014;116:1019–25.

    Article  CAS  Google Scholar 

  17. Gao YH, Liu ZH. Hydrothermal synthesis and thermodynamic properties of 2ZnO·3B2O3·3H2O. J Chem Thermodyn. 2009;41:775–8.

    Article  CAS  Google Scholar 

  18. Gao SL, Chen SP, Hu RZ, Li HY, Shi QZ. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 2002;18:362–6 (in Chinese).

    CAS  Google Scholar 

  19. Wang XL, Xia ZQ, Wei W, Xie G, Chen SP, Gao SL. Synthesis, structure, and thermodynamics of a lanthanide coordination compound incorporating 5-nitroisophthalic acid. J Chem Thermodyn. 2012;55:124–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 21173143). The authors thank the guidance of Prof. Zhi-Hong Liu, Shaanxi Normal University, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa-Ying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SY., Liang, P. Determination of adsorption heat of two boron-containing microporous materials in some organic solvents by microcalorimetry. J Therm Anal Calorim 134, 2241–2246 (2018). https://doi.org/10.1007/s10973-018-7606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7606-z

Keywords

Navigation