Skip to main content
Log in

Heat capacities and thermodynamic properties of a Zn-based zeolitic imidazolate framework

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacities of one–three-dimensional zeolitic imidazolate frameworks Zn(C4H6N2)2 (ZIF-8) were measured by temperature-modulated differential scanning calorimetry over the temperature range from 213 to 423 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The fundamental thermodynamic parameters such as entropy and enthalpy relative to 298.15 K were calculated based on the experimentally determined molar heat capacities. The compound was characterized by powder XRD and FT-IR spectroscopy. Moreover, the thermal decomposition characteristics of ZIF-8 were investigated by thermogravimetry spectrometer (TG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci. 2006;103(27):10186–91. https://doi.org/10.1073/pnas.0602439103.

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008;319(5865):939–43. https://doi.org/10.1126/science.1152516.

    Article  CAS  PubMed  Google Scholar 

  3. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res. 2010;43(1):58–67. https://doi.org/10.1021/ar900116g.

    Article  CAS  PubMed  Google Scholar 

  4. Eddaoudi M, Sava DF, Eubank JF, Adil K, Guillerm V. Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev. 2015;44(1):228–49. https://doi.org/10.1039/c4cs00230j.

    Article  CAS  PubMed  Google Scholar 

  5. Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem. 2006;118(10):1587–9. https://doi.org/10.1002/ange.200503778.

    Article  Google Scholar 

  6. Pimentel BR, Parulkar A, Zhou E-K, Brunelli NA, Lively RP. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. Chemsuschem. 2014;7(12):3202–40. https://doi.org/10.1002/cssc.201402647.

    Article  CAS  PubMed  Google Scholar 

  7. Wang C, Liu X, Keser Demir N, Chen JP, Li K. Applications of water stable metal-organic frameworks. Chem Soc Rev. 2016;45(18):5107–34. https://doi.org/10.1039/C6CS00362A.

    Article  CAS  PubMed  Google Scholar 

  8. Majewski MB, Howarth AJ, Li P, Wasielewski MR, Hupp JT, Farha OK. Enzyme encapsulation in metal-organic frameworks for applications in catalysis. CrystEngComm. 2017;19(29):4082–91. https://doi.org/10.1039/C7CE00022G.

    Article  CAS  Google Scholar 

  9. Wunderlich B. The tribulations and successes on the road from DSC to TMDSC in the 20th century the prospects for the 21st century. J Therm Anal Calorim. 2004;78(1):7–31. https://doi.org/10.1023/b:jtan.0000042150.03836.27.

    Article  CAS  Google Scholar 

  10. Song LF, Jiao CL, Jiang CH, Zhang JA, Sun LX, Xu F, et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. 2011;103(1):365–72. https://doi.org/10.1007/s10973-010-0777-x.

    Article  CAS  Google Scholar 

  11. Androsch R. Heat capacity measurements using temperature-modulated heat flux DSC with close control of the heater temperature. J Therm Anal Calorim. 2000;61(1):75–89. https://doi.org/10.1023/a:1010104406353.

    Article  CAS  Google Scholar 

  12. Wunderlich B, Jin YM, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93. https://doi.org/10.1016/s0040-6031(94)85214-6.

    Article  CAS  Google Scholar 

  13. Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402(1–2):91–8.

    Article  CAS  Google Scholar 

  14. Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85(1):179–87. https://doi.org/10.1007/s10973-005-7347-7.

    Article  CAS  Google Scholar 

  15. Cheng P, Hu YH. H2O-functionalized zeolitic Zn(2-methylimidazole)2 framework (ZIF-8) for H2 storage. J Phys Chem C. 2014;118(38):21866–72. https://doi.org/10.1021/jp507030g.

    Article  CAS  Google Scholar 

  16. Gadipelli S, Travis W, Zhou W, Guo Z. A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ Sci. 2014;7(7):2232–8. https://doi.org/10.1039/C4EE01009D.

    Article  CAS  Google Scholar 

  17. Russell BA, Migone AD. Low temperature adsorption study of CO2 in ZIF-8. Microporous Mesoporous Mater. 2017;246(Supplement C):178–85. https://doi.org/10.1016/j.micromeso.2017.03.030.

    Article  CAS  Google Scholar 

  18. Xu X, Wang H, Liu J, Yan H. The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. J Mater Sci Mater Electron. 2017;28(11):7532–43. https://doi.org/10.1007/s10854-017-6485-6.

    Article  CAS  Google Scholar 

  19. Archer DG. Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22(6):1441–53.

    Article  CAS  Google Scholar 

  20. Ginnings DC, Furukawa GT. Heat capacity standards for the range 14 to 1200°K. J Am Chem Soc. 1953;75(3):522–7. https://doi.org/10.1021/ja01099a004.

    Article  CAS  Google Scholar 

  21. Cravillon J, Münzer S, Lohmeier S-J, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 2009;21(8):1410–2. https://doi.org/10.1021/cm900166h.

    Article  CAS  Google Scholar 

  22. Lee T, Kim H, Cho W, Han DY, Ridwan M, Yoon CW, et al. Thermosensitive structural changes and adsorption properties of zeolitic imidazolate framework-8 (ZIF-8). J Phys Chem C. 2015;119(15):8226–37. https://doi.org/10.1021/acs.jpcc.5b01519.

    Article  CAS  Google Scholar 

  23. Jiang C-H, Song L-F, Jiao C-L, Zhang J, Sun L-X, Xu F, et al. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103(3):1095–103. https://doi.org/10.1007/s10973-010-1197-7.

    Article  CAS  Google Scholar 

  24. Song L-F, Jiao C-L, Jiang C-H, Zhang J, Sun L-X, Xu F, et al. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. 2011;103(1):365–72. https://doi.org/10.1007/s10973-010-0777-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21503129, 21572126, 21675109, 61571062), Education Department of Henan Province (No. 15A150073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan-Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, LX., Zhou, YL. et al. Heat capacities and thermodynamic properties of a Zn-based zeolitic imidazolate framework. J Therm Anal Calorim 135, 3191–3196 (2019). https://doi.org/10.1007/s10973-018-7605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7605-0

Keywords

Navigation