Skip to main content
Log in

Preparation and characterization of a new series of solid solutions of Bi1−xYxFeO3 (0 < x < 1) from the thermal decomposition of hexacyanoferrates doped with yttrium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid solutions of Bi1−xYx[Fe(CN)6]·4H2O (0 < x < 1) complexes were synthesized and characterized. The crystal structures were refined by Rietveld analysis using X-ray powder diffraction data. The complexes of the series crystallized in the orthorhombic system, space group Cmcm. The gradual decrease in cell volume indicates that the substitution of Bi3+ by Y3+ was appropriately materialized. The thermal behavior was studied by thermogravimetric and differential thermal analysis. A single phase of perovskite-type Bi1−xYxFeO3 powders was obtained by thermal decomposition of the complexes at about 600 °C. The obtained products were identified and characterized by energy-dispersive spectroscopy, Raman and Fourier transform infrared spectroscopy and powder X-ray diffraction. The size and morphology of the complexes and their thermal decomposition products were evaluated by scanning electron microscopy. Thermal analysis showed that the complexes were good intermediaries for the synthesis of high-purity mixed oxides with a uniform particle size of the order of nanometers. To evaluate the effect of doping with yttrium, electrical transport measurements were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mullica D, Perkins H, Sappenfield E. Synthesis, spectroscopic studies, and crystal and molecular structure of bismuth hexacyanoferrate(III) tetrahydrate, BiFe(CN)6·4H2O. Inorg Chim Acta. 1988;142:9–12.

    Article  CAS  Google Scholar 

  2. Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI. Crystal structure refinement, spectroscopic study and magnetic properties of yttrium hexacyanoferrate(III). J Mol Struct. 2011;1003:129–33.

    Article  CAS  Google Scholar 

  3. Gil DM, Carbonio RE, Gómez MI. Crystal structure refinement and vibrational analysis of Y[Co(CN)6]·4H2O and its thermal decomposition products. J Mol Struct. 2013;1041:23–8.

    Article  CAS  Google Scholar 

  4. Traversa E, Nunziante P, Sakamoto M, Sadaoka Y, Carotta MC, Martinelli G. Synthesis and structural characterization of trimetallic perovskite-type oxides, LaFexCo1−xO3, by the thermal decomposition of cyano complexes, La[FexCo1−x(CN6)]·nH2O. J Mater Res. 1998;33:673–81.

    CAS  Google Scholar 

  5. Traversa E, Sakamoto M, Sadaoka Y. A chemical route for the preparation of nanosized rare earth perovskite-type oxides for electroceramic applications. Part Sci Technol. 1998;16:185–214.

    Article  CAS  Google Scholar 

  6. Carotta MC, Butturi MA, Martinelli G, Sadaoka Y, Nunziante P, Traversa E. Microstructural evolution of nanosized LaFeO3 powders from the thermal decomposition of a cyano-complex for thick film gas sensors. Sens Actuators B Chem. 1997;44:590–4.

    Article  CAS  Google Scholar 

  7. Sadaoka Y, Watanabe K, Sakai Y, Sakamoto M. Preparation of perovskite-type oxides by thermal decomposition of heteronuclear complexes, {Ln[Fe(CN)6nH2O}x, (Ln = La ~ Ho). J Alloys Compd. 1995;224:194–8.

    Article  CAS  Google Scholar 

  8. Sadaoka Y, Aono H, Traversa E, Sakamoto M. Thermal evolution of nanosized LaFeO3 powders from a heteronuclear complex, La[Fe(CN)6nH2O. J Alloys Compd. 1998;278:135–41.

    Article  CAS  Google Scholar 

  9. Matsushima S, Sakamoto M, Aono H, Sadaoka Y. Thermal decomposition behavior of heteronuclear complexes Ln[FexCo1−x(CN)6]4H2O (Ln = Pr–Yb). Solid State Ion. 1998;108:31–6.

    Article  CAS  Google Scholar 

  10. Martinelli G, Carotta MC, Ferroni M, Sadaoka Y, Traversa E. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sensor Actuators B Chem. 1999;55:99–110.

    Article  CAS  Google Scholar 

  11. Navarro MC, Pannunzio-Miner EV, Pagola S, Gómez MI, Carbonio RE. Structural refinement of Nd[Fe(CN)6]·4H2O and study of NdFeO3 obtained by its oxidative thermal decomposition at very low temperatures. J Solid State Chem. 2005;178:847–54.

    Article  CAS  Google Scholar 

  12. Navarro MC, Lagarrigue MC, De Paoli JM, Carbonio RE, Gómez MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655–60.

    Article  CAS  Google Scholar 

  13. Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI. Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, Y[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2011;103:889–96.

    Article  CAS  Google Scholar 

  14. Aono H, Kondo N, Katagishi H, Kurihara M, Sakamoto M, Sadaoka Y. Characterizations of trimetallic heteronuclear Bi1−xLax[Fe(CN)6]·n(H2O) complexes and their thermal decomposition products. J Mater Sci. 2006;41:5339–45.

    Article  CAS  Google Scholar 

  15. Medina Córdoba L, Echeverría GA, Piro OE, Gómez MI. Ammonium, barium hexacyanoferrate (II) trihydrate. J Therm Anal Calorim. 2015;120:1827–34.

    Article  CAS  Google Scholar 

  16. Gil DM, Guimpel J, Paesano A, Carbonio RE, Gómez MI. Y[Fe1−xCox(CN)6]·4(H2O) (0 ≤ x ≤ 1) solid solution: synthesis, crystal structure, thermal decomposition and spectroscopic and magnetic properties. J Mol Struct. 2012;1015:112–7.

    Article  CAS  Google Scholar 

  17. Li L, Wang X, Zhang Y. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis. Mater Res Bull. 2014;50:18–22.

    Article  CAS  Google Scholar 

  18. Yamaguchi S, Okuwa T, Wada H, Yamaura H, Yahiro H. Cyanosilylation of benzaldehyde with TMSCN over perovskite-type oxide catalyst prepared by thermal decomposition of heteronuclear cyano complex precursors. Res Chem Intermed. 2015;41:9551–60.

    Article  CAS  Google Scholar 

  19. Hosokawa S, Jeon H, Inoue M. Thermal stabilities of hexagonal and orthorhombic YbFeO3 synthesized by solvothermal method and their catalytic activities for methane combustion. Res Chem Intermed. 2011;37:291–6.

    Article  CAS  Google Scholar 

  20. Priya A, Banu I, Anwar S. Influence of Dy and Cu doping on the room temperature multiferroic properties of BiFeO3. J Magn Magn Mater. 2016;401:333–8.

    Article  CAS  Google Scholar 

  21. Jakubisova-Liskova E, Visnovsky S, Chang H, Wuet M. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films. Appl Phys. 2015;117:17B702.1-3.

    Google Scholar 

  22. Popkov AF, Davydova MD, Zvezdin KA, Solov’yov SV, Zvezdin AK. Origin of the giant linear magnetoelectric effect in perovskite like multiferroic BiFeO3. Phys Rev B. 2016;93:094435–40.

    Article  CAS  Google Scholar 

  23. Khodabakhsh M, Sen C, Kassaf H, Gulgun MA, Misirlioglu IB. Strong smearing and disappearance of phase transitions into polar phases due to inhomogeneous lattice strains induced by A-site doping in Bi1−xAxFeO3 (A: La, Sm, Gd). J Alloys Compd. 2014;604:117–29.

    Article  CAS  Google Scholar 

  24. Pikula T, Dzik J, Lisinska-Czekaj A, Czekaj D, Jartych E. Structure and hyperfine interactions in Bi1−xNdxFeO3 solid solutions prepared by solid-state sintering. J Alloys Compd. 2014;606:1–6.

    Article  CAS  Google Scholar 

  25. Luo L, Wei W, Yuan X, Shen K, Xu M, Xu Q. Multiferroic properties of Y-doped BiFeO3. J Alloys Compd. 2012;540:36–8.

    Article  CAS  Google Scholar 

  26. James V, Prabhakar Rao P, Sameera S, Divya S. Multiferroic based reddish brown pigments: Bi1−xMxFeO3 (M = Y and La) for coloring applications. Ceram Int. 2014;40:2229–35.

    Article  CAS  Google Scholar 

  27. Sharma P, Varshney D, Satapathy S, Gupta PK. Effect of Pr substitution on structural and electrical properties of BiFeO3 ceramics. Mater Chem Phys. 2014;143:629–36.

    Article  CAS  Google Scholar 

  28. Dutta PD, Mandal BP, Naik R, Lawes G, Tyagi AK. Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-Doped BiFeO3 nanoparticles. J Phys Chem. 2013;117:2382–9.

    CAS  Google Scholar 

  29. Wu YJ, Chen XK, Zang J, Chen XJ. Magnetic enhancement across a ferroelectric–antiferroelectric phase boundary in Bi1−xNdxFeO3. J Appl Phys. 2012;111:053927.1-5.

    Google Scholar 

  30. Kumar N, Panwar N, Gahtori B, Singh N, Kishan H, Awana VPS. Structural, dielectric and magnetic properties of Pr substituted Bi1−xPrxFeO3 (0 ≤ x ≤ 0.15) multiferroic compounds. J Alloys Compd. 2010;501:29–30.

    Article  CAS  Google Scholar 

  31. Chen Z, Hu J, Lu Z, He X. Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol–gel–hydrothermal method. Ceram Int. 2011;37:2359–64.

    Article  CAS  Google Scholar 

  32. Navarro MC, Jorge G, Negri RM, Saleh Medina LM, Gómez MI. Synthesis and characterization of Bi1−xNdxFeO3(0 ≤ x ≤ 0.3) prepared by thermal decomposition of Bi1−xNdx[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2015;122:73–80.

    Article  CAS  Google Scholar 

  33. Ilic NI, Bobic JD, Stojadinovic BS, Dzunuzovic AS, Petrovic MMV, Dohcevic-Mitrovic ZD, Stojanovic BD. Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium. Mater Res Bull. 2016;77:60–9.

    Article  CAS  Google Scholar 

  34. Rodriguez-Carbajal J. Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld method. Phys B. 1993;192:55–69.

    Article  Google Scholar 

  35. Young RA. The Rietveld method. Oxford: Oxford Scientifics Publications; 1995.

    Google Scholar 

  36. West AR. Solid state chemistry and its applications. 5th ed. London: Wiley; 1992.

    Google Scholar 

  37. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986.

    Google Scholar 

  38. Yukawa Y, Igarashi S, Kawaura T, Miyamoto H. Boundary structures in a series of lanthanoid hexacyanocobaltate(III) n-hydrates and their Raman spectra. Inorg Chem. 1996;35:7399–403.

    Article  CAS  PubMed  Google Scholar 

  39. Gómez A, Reguera E. The structure of three cadmium hexacyanometallates(II): Cd2[Fe(CN)6]·8H2O, Cd2[Ru(CN)6]·8H2O and Cd2[Os(CN)6]·8H2O. Int Inorg Mater. 2001;3:1045–51.

    Article  Google Scholar 

  40. Avila M, Reguera L, Vargas C, Reguera E. Tetrahedral coordination for Zn in hexacyanometallates: Structures of Zn3A2[M(CN)6]2·xH2O with A = K, Rb, Cs and M = Ru, Os. J Phys Chem Solids. 2009;70:477–82.

    Article  CAS  Google Scholar 

  41. Hahn E, Bohlig H, Ackermann M, Fruwert J. Isotopic shifts and assignment of CN stretching frequencies of the solid K4Mo(CN)8]2H2O. Spectrochim Acta. 1981;37A:1007–9.

    Article  CAS  Google Scholar 

  42. Han J, Blackburn NJ, Loehr TM. Identification of the cyanide stretching frequency in the cyano derivative of Cu/Zn-superoxide dismutase by IR and Raman spectroscopy. Inorg Chem. 1992;31:3223–9.

    Article  CAS  Google Scholar 

  43. Wei J, Liu Y, Bai X, Li C, Liu Y, Xu Z, Gemeiner P, Haumont R, Infante IC, Dkhil B. Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics. Ceram Int. 2016;42:13395–403.

    Article  CAS  Google Scholar 

  44. Cotton FA. La teoría de grupos aplicada a la química. 2nd ed. Mexico: Limusa; 1977.

    Google Scholar 

  45. Wu YJ, Chen XK, Zhang J, Chen XJ. Structural transition and enhanced magnetization in Bi1−xYxFeO3. J Magn Magn Mater. 2012;324:1348–52.

    Article  CAS  Google Scholar 

  46. Farhadi S, Rashidi N. Microwave-induced solid-state the composition of the Bi[Fe(CN)6]5H2O precursor: a novel route for the rapid and facile synthesis of pure and single-phase BiFeO3 nanopowder. J Alloys Compd. 2010;503:439–44.

    Article  CAS  Google Scholar 

  47. Mott NF. Metal–insulator transitions. 2nd ed. London: International Ltd; 1990.

    Book  Google Scholar 

  48. Mott NF, Davis EA. Electronic processes in non-crystalline materials. 2nd ed. Oxford: University Press; 1979.

    Google Scholar 

  49. Ji W, Yao K, Liang YC. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv Mater. 2010;22:1763–6.

    Article  CAS  PubMed  Google Scholar 

  50. Gautam A, Uniyal P, Yadav KL, Rangra VS. Dielectric and magnetic properties of Bi1−xYxFeO3 ceramics. J Phys Chem Solids. 2012;73:188–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Secretaría de Ciencia, Arte e Innovación Tecnológica, Universidad Nacional de Tucumán (SCAIT), for the financial support given, Projects 26-D517 and 26-E530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Inés Gómez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. A12

SEM micrographs of: (a) Bi[Fe(CN)6]·4H2O (b) BiFeO3 (TIFF 1919 kb)

Fig. A13

SEM micrographs of: (a) Bi0.9Y0.1[Fe(CN)6]·4H2O (b) Bi0.9Y0.1FeO3 (TIFF 2061 kb)

Fig. A14

SEM micrographs of: (a) Bi0.8Y0.2[Fe(CN)6]·4H2O (b) Bi0.8Y0.2FeO3 (TIFF 2036 kb)

Fig. A15

SEM micrographs of: (a) Bi0.6Y0.4[Fe(CN)6]·4H2O (b) Bi0.6Y0.4FeO3 (TIFF 2035 kb)

Fig. A16

SEM micrographs of: (a) Bi0.5Y0.5[Fe(CN)6]·4H2O (b) Bi0.5Y0.5FeO3 (TIFF 1953 kb)

Fig. A17

SEM micrographs of: (a) Bi0.3Y0.7[Fe(CN)6]·4H2O (b) Bi0.3Y0.7FeO3 (TIFF 1957 kb)

Fig. A18

SEM micrographs of: (a) Bi0.1Y0.9[Fe(CN)6]·4H2O (b) Bi0.1Y0.9FeO3 (TIFF 1937 kb)

Table A4

Some selected interatomic distances and angles for Bi 0.7Y0.3[Fe(CN)6]·4H2O (See Fig. 3 for bonds identification) (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runco Leal, V., Navarro, C., Bridoux, G. et al. Preparation and characterization of a new series of solid solutions of Bi1−xYxFeO3 (0 < x < 1) from the thermal decomposition of hexacyanoferrates doped with yttrium. J Therm Anal Calorim 135, 3259–3268 (2019). https://doi.org/10.1007/s10973-018-7593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7593-0

Keywords

Navigation