Skip to main content
Log in

Incorporation of silica nanoparticles and polyurethane into hybrid composites for increase of char residue

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effect of different chain extenders, silica nanoparticle loading, and using sol–gel method on the thermal properties of polyurethane (PU) hybrid composites was investigated from the viewpoint of increase of char residue and decomposition temperature. Two different chain extenders were used for this purpose, and the PU products were modified with (3-aminopropyl) triethoxysilane to obtain PUI (ethoxysilane-terminated PU with pyromellitic dianhydride chain extender) and PUBD (ethoxysilane-terminated PU with butanediol chain extender), respectively. Fourier-transform infrared spectroscopy was used for confirmation of synthesis of PUI and PUBD. Thermogravimetric analysis showed that char residue and thermal degradation temperature of PU hybrid composites were increased after incorporation of silica nanoparticles. Also, using pyromellitic dianhydride as chain extender resulted in higher char contents and also thermal stabilities in comparison with butanediol. By the addition of 4 and 8 mass% silica nanoparticles in PUBD hybrids, char residue increased to 15.1 and 16.3%, respectively. In the case of PUI hybrids, addition of 4 and 8 mass% of silica nanoparticles resulted in char residue of 20.8 and 25.7% and Tmax of 409.3 and 411.8 °C, respectively. X-ray diffraction showed an amorphous peak for cross-linked PU at 2θ = 21.7°. Transmission electron microscopy showed dispersion of silica nanoparticles in the hybrid composite of PUI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C. Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. J Appl Polym Sci. 2013;130:453–62.

    Article  CAS  Google Scholar 

  2. Michałowski S, Hebda E, Pielichowski K. Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. J Therm Anal Calorim. 2017;130:155–63.

    Article  CAS  Google Scholar 

  3. Vaithylingam R, Ansari M, Shanks RA. Recent advances in polyurethane-based nanocomposites: a review. Polym Plast Technol Eng. 2017;56:1–14.

    Article  CAS  Google Scholar 

  4. Pokharel P, Pant B, Pokhrel K, Pant HR, Lim JG, Kim HY. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Compos Part B Eng. 2015;78:192–201.

    Article  CAS  Google Scholar 

  5. Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ. Thermal degradation of segmented polyurethanes. J Appl Polym Sci. 1994;51:1087–95.

    Article  Google Scholar 

  6. Gnanarajan TP, Iyer NP, Nasar AS, Radhakrishnan G. Preparation and properties of poly (urethane-imide) s derived from amine-blocked-polyurethane prepolymer and pyromellitic dianhydride. Eur Polym J. 2002;38:487–95.

    Article  Google Scholar 

  7. Liu J, Ma D. Study on synthesis and thermal properties of polyurethane–imide copolymers with multiple hard segments. J Appl Polym Sci. 2002;84:2206–15.

    Article  CAS  Google Scholar 

  8. Chen G, Zhou S, Gu G, Yang H, Wu L. Effects of surface properties of colloidal silica particles on redispersibility and properties of acrylic-based polyurethane/silica composites. J Colloid Interface Sci. 2005;281:339–50.

    Article  CAS  PubMed  Google Scholar 

  9. Chen G, Zhou S, Gu G, Wu L. Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites. Colloids Surf A Physicochem Eng Asp. 2007;296:29–36.

    Article  CAS  Google Scholar 

  10. Wu HL, Yang YT, Ma CCM, Kuan HC. Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites. J Polym Sci Part A Polym Chem. 2005;43:6084–94.

    Article  CAS  Google Scholar 

  11. Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH. Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol. 2012;206:4778–84.

    Article  CAS  Google Scholar 

  12. Song J, Chen G, Ding Y, Shi J, Liu Y, Li Q. Preparation and characterization of epoxy resin modified with alkoxysilane-functionalized poly (urethane-imide) by the sol–gel process. Polym Int. 2011;60:1594–9.

    Article  CAS  Google Scholar 

  13. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K. Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polym Compos. 2013;34:1648–54.

    Article  CAS  Google Scholar 

  14. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K. In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties. J Polym Res. 2013;20:163.

    Article  CAS  Google Scholar 

  15. Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari SA, Khezri K. Grafting through” approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. J Sol Gel Sci Technol. 2013;66:337–44.

    Article  CAS  Google Scholar 

  16. Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Mousavi A, Razavi B, Shahi S. Preparation of organic-inorganic hybrid nanocomposites from chemically modified epoxy and novolac resins and silica-attached carbon nanotubes by sol–gel process: investigation of thermal degradation and stability. Prog Org Coat. 2018;117:154–65.

    Article  CAS  Google Scholar 

  17. Mousavi A, Roghani-Mamaqani H, Salami-Kalajahi M, Shahi S, Abdollahi A. Modification of graphene with silica nanoparticles for use in hybrid network formation from epoxy, novolac, and epoxidized novolac resins by sol–gel method: investigation of thermal properties. Express Polym Lett. 2018;12:187–202.

    Article  CAS  Google Scholar 

  18. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: high carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stab. 2016;124:1–14.

    Article  CAS  Google Scholar 

  19. Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Razavi B, Mousavi A, Shahi S. Preparation of hybrid composites based on epoxy, novolac, and epoxidized novolac resins and silica nanoparticles with high char residue by sol–gel method. Polym Compos. 2018. https://doi.org/10.1002/pc.24631.

    Article  Google Scholar 

  20. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M, Kariminejad B. Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network: two different approaches for improving thermal properties of resin. J Therm Anal Calorim. 2017;128:1027–37.

    Article  CAS  Google Scholar 

  21. Ebrahimi H, Roghani-Mamaqani H, Salami-Kalajahi M. Preparation of carbon nanotube-containing hybrid composites from epoxy, novolac, and epoxidized novolac resins using sol–gel method. J Therm Anal Calorim. 2018;132:513–24.

    Article  CAS  Google Scholar 

  22. Mousavi A, Roghani-Mamaqani H, Salami-Kalajahi M, Shahi S, Abdollahi A. Grafting of silica nanoparticles at the surface of graphene for application in novolac-type phenolic resin hybrid composites. Mater Chem Phys. 2018. https://doi.org/10.1016/j.matchemphys.2018.05.017.

    Article  Google Scholar 

  23. Sears GW. Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal Chem. 1956;28:1981–3.

    Article  CAS  Google Scholar 

  24. Najafi-Shoa S, Roghani-Mamaqani H, Salami-Kalajahi M. Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin. J Sol Gel Sci Technol. 2016;80:362–77.

    Article  CAS  Google Scholar 

  25. Najafi-Shoa S, Roghani-Mamaqani H, Salami-Kalajahi M, Azimi R, Gholipour-Mahmoudalilou M. Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties. J Mater Sci. 2016;51:9057–73.

    Article  CAS  Google Scholar 

  26. Roghani-Mamaqani H, Khezri K. Polystyrene-attached graphene nanolayers by reversible addition-fragmentation chain transfer polymerization: a grafting from epoxy groups with various densities. J Polym Res. 2016;23:190.

    Article  CAS  Google Scholar 

  27. Roghani-Mamaqani H, Khezri K. A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci. 2016;360:373–82.

    Article  CAS  Google Scholar 

  28. Roghani-Mamaqani H. Surface-initiated ATRP of styrene from epoxy groups of graphene nanolayers: twofold polystyrene chains and various graft densities. RSC Adv. 2015;5:53357–68.

    Article  CAS  Google Scholar 

  29. Mishra AK, Chattopadhyay D, Sreedhar B, Raju K. Thermal and dynamic mechanical characterization of polyurethane-urea-imide coatings. J Appl Polym Sci. 2006;102:3158–67.

    Article  CAS  Google Scholar 

  30. Gholipour-Mahmoudalilou M, Roghani-Mamaqani H, Azimi R, Abdollahi A. Synthesis of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin. Appl Surf Sci. 2018;428:1061–9.

    Article  CAS  Google Scholar 

  31. Pourhosseini-Pakdel Z, Roghani-Mamaqani H, Azimi R, Gholipour-Mahmoudalilou M. Multifunctional curing component for epoxidized novolac resin by grafting poly (amidoamine) on carbon nanotubes using a divergent method. Polym Adv Technol. 2018. https://doi.org/10.1002/pat.4329.

    Article  Google Scholar 

  32. Gao X, Zhu Y, Zhao X, Wang Z, An D, Ma Y. Synthesis and characterization of polyurethane/SiO2 nanocomposites. Appl Surf Sci. 2011;257:4719–24.

    Article  CAS  Google Scholar 

  33. Azimi R, Roghani-Mamaqani H, Gholipour-Mahmoudalilou M. Grafting poly (amidoamine) dendrimer-modified silica nanoparticles to graphene oxide for preparation of a composite and curing agent for epoxy resin. Polymer. 2017;126:152–61.

    Article  CAS  Google Scholar 

  34. Goksu EI, Hoopes MI, Nellis BA, Xing C, Faller R, Frank CW. Silica xerogel/aerogel-supported lipid bilayers: consequences of surface corrugation. Biochim et Biophys Acta (BBA) Biomem. 2010;1798:719–29.

    Article  CAS  Google Scholar 

  35. Hui B, Ye L. Highly heat-resistant silicon-containing polyurethane-imide copolymers: synthesis and thermal mechanical stability. Eur Polym J. 2017;91:337–45.

    Article  CAS  Google Scholar 

  36. Yeganeh H, Shamekhi MA. Poly (urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer. 2004;45:359–65.

    Article  CAS  Google Scholar 

  37. Lin MF, Shu YC, Tsen WC, Chuang FS. Synthesis of polyurethane–imide (PU–imide) copolymers with different dianhydrides and their properties. Polym Int. 1999;48:433–45.

    Article  CAS  Google Scholar 

  38. Nallathambi G, Ramachandran T, Rajendran V, Palanivelu R. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Mater Res. 2011;14:552–9.

    Article  CAS  Google Scholar 

  39. Chen J, Liu M, Sun J, Xu F. Templated magnesiothermic synthesis of silicon nanotube bundles and their electrochemical performances in lithium ion batteries. RSC Adv. 2014;4:40951–7.

    Article  CAS  Google Scholar 

  40. Wang C, Ma C, Mu C, Lin W. Tailor-made zwitterionic polyurethane coatings: microstructure, mechanical property and their antimicrobial performance. RSC Adv. 2017;7:27522–9.

    Article  CAS  Google Scholar 

  41. Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale. 2016;8:12977–89.

    Article  CAS  PubMed  Google Scholar 

  42. Mo M, Zhao W, Chen Z, Yu Q, Zeng Z, Wu X, Xue Q. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv. 2015;5:56486–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iran National Science Foundation (INSF) for the financial support (Project Number: 95839965).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Roghani-Mamaqani or Mehdi Salami-Kalajahi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnam, R., Roghani-Mamaqani, H. & Salami-Kalajahi, M. Incorporation of silica nanoparticles and polyurethane into hybrid composites for increase of char residue. J Therm Anal Calorim 135, 3311–3319 (2019). https://doi.org/10.1007/s10973-018-7581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7581-4

Keywords

Navigation