Skip to main content
Log in

Polyurethane–imide–polyhedral oligomeric silsesquioxane hybrid nano-composites

Synthesis, structure and thermal mechanical stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to improve thermo-stability of polyurethane (PU), both imide group and polyhedral oligomeric silsesquioxane (POSS) were introduced into PU backbones, and PU–imide–POSS hybrid nano-composites (PUI–POSS) were synthesized with high reaction efficiency. The spherical domain formed through strong aggregation effect of POSS units, and the trend of micro-phase separation of PU was strengthened. The TDI–POSS aggregates with urethane linkage dispersed uniformly in PU matrix and maintained self-assembling ability by the formation of crystal phases with tight crystalline lamella. With increasing POSS content, the thermal degradation temperature and char yield increased, and degradation rate decreased remarkably. Moreover, the difference of degradation temperature significantly increased with degradation progressing, indicating more pronouncing thermo-stabilizing effect of POSS units at high temperature. Compared with PUI, T60% of PUI–POSS with 14.96 mass POSS increased by 270 °C. The degradation activation energy showed a large improvement, and high storage modulus can be kept with increasing temperature by introducing POSS units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qian H, Xiong W, Baijie Zh, Fanzhuo M, Jilin P. Preparation and properties of highly branched poly(urethane–imide)-epoxy cross-linked copolymer. Des Monomers Polym. 2014;17:445–52.

    Article  CAS  Google Scholar 

  2. Chang Z, Fahs GB, Hudson AG, Orler EB, Moore RB, Wilkes GL, Turner SR. Synthesis and properties of segmented polyurethanes with triptycene units in the soft segment. Macromol Chem Phys. 2015;216:1180–91.

    Article  CAS  Google Scholar 

  3. Matolyak L, Keum J, LaShanda T, Korley LT. Molecular design: network architecture and its impact on the organization and mechanics of peptide–polyurea hybrids. Biomacromol. 2016;17:3931–9.

    Article  CAS  Google Scholar 

  4. Juliana N, Zoran SP, Van J, Ihail I, Ranklin J. Segmented polyurethane elastomers by nonisocyanate route. J Appl Polym Sci. 2015. https://doi.org/10.1002/app.42492.

    Article  Google Scholar 

  5. Mishra AM, Chattopadhyay DK, Sreedhar B, Raju KVSN. FTIR and XPS studies of polyurethane–urea–imide coatings. Prog Org Coat. 2006;55:231–43.

    Article  CAS  Google Scholar 

  6. Qin Y, Lin Y. Mechanical and thermal properties of polyurethane elastomers synthesized with toluene diisocyanate trimer. J Macromol Sci Part B Phys. 2013;52:138–54.

    Article  CAS  Google Scholar 

  7. Shahram MA, Ali M. New polyurethane elastomers with enhanced thermal stability. Polym Plast Technol Eng. 2014;53:1553–60.

    Article  CAS  Google Scholar 

  8. Mallakpour S, Rafiemanzelat F. Study of the miscibility of hard and soft segments of optically active poly(amide–imide–ether–urethane) copolymers based-l-leucine with different soft segments. Polym Bull. 2006;56:9–18.

    Article  CAS  Google Scholar 

  9. Ni H, Aaserud DJ, Simonsiek WJ Jr, Soucek MD. Preparation and characterization of alkoxysilane functionalized isocyanurates. Polymer. 2000;41:57–71.

    Article  CAS  Google Scholar 

  10. Kiyotsugu A, Shin II, Hiroshi O. Preparation and properties of imide-containing elastic polymers from elastic polyureas and pyromellitic dianhydride. J Polym Sci Part A Polym Chem. 2000;38:715–23.

    Article  Google Scholar 

  11. Lin MF, Shu YC, Tsen WC, Chuang FS. Synthesis of polyurethane–imide (PU–imide)copolymers with different dianhydrides and their properties. Polym Int. 1999;48:433–45.

    Article  CAS  Google Scholar 

  12. Min Z, Tsutomu T. Preparation and characterization of poly(urethane–imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer. 1999;40:5153–60.

    Article  Google Scholar 

  13. Shuying G, Shengpeng J, Lingling L. Polyurethane/polyhedral oligomeric silsesquioxane shape memory nanocomposites with low trigger temperature and quick response. J Polym Res. 2015;22:142–51.

    Article  CAS  Google Scholar 

  14. Junwei G, Yang L, Chaobo L, Yusheng T, Lin T, Yikun Z, Jie K, Hu L, Zhanhu G. Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. J Mater Chem C. 2018;6:3004–15.

    Article  Google Scholar 

  15. Xutong Y, Lin T, Yongqiang G, Chaobo L, Qiuyu Z, Kaichang K, Junwei G. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos A Appl Sci Manuf. 2017;101:237–42.

    Article  CAS  Google Scholar 

  16. Tonghui H, Xiaoyang L, Guohua H, Tao J, Qunchao Zh. Preparation and characterization of polyurethane/POSS hybrid aqueous dispersions from mono-amino substituted POSS. Polym Bull. 2017;74:517–29.

    Article  CAS  Google Scholar 

  17. Jie H, Pingping J, Yue W, Jianneng D, Jian H. Soy-castor oil based polyurethanes with octaphenylsilsesquioxanetetraol double-decker silsesquioxane in the main chains. RSC Adv. 2016;6:69521–9.

    Article  CAS  Google Scholar 

  18. Steven S, Robert AS. Novel polyhedral oligomeric silsesquioxane-substituted dendritic polyester tougheners for linear thermoplastic polyurethane. J Appl Polym Sci. 2012;126:440–54.

    Article  CAS  Google Scholar 

  19. Marcin W, Janusz D. Synthesis, structure and properties of poly(ester-urethane-urea)s synthesized using biobased diamine. J Renew Mater. 2016;4:72–7.

    Article  Google Scholar 

  20. Janusz D, Paulina K, Kamila B, Marcin W. Synthesis, structure and properties of poly(ester-urethane)s obtained using bio-based and petrochemical 1,3-propanediol and 1,4-butanediol. J Therm Anal Calorim. 2017;130:261–76.

    Article  CAS  Google Scholar 

  21. Chuang F-S. Analysis of thermal degradation of diacetylene-containing polyurethane copolymers. Polym Degrad Stab. 2007;92:1393–407.

    Article  CAS  Google Scholar 

  22. Wu K, Hu Y, Song L, Lu H, Wang Z. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res. 2009;48:3150–7.

    Article  CAS  Google Scholar 

  23. Jellinek H, Takada K. Toxic gas evolution from polymers: evolution of hydrogen cyanide from polyurethanes. J Polym Sci Part A Polym Chem. 1977;15:2269–88.

    Article  CAS  Google Scholar 

  24. Junwei G, Chaobo L, Jing D, Wencai D, Qiuyu Z. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Adv. 2016;6:35809–14.

    Article  CAS  Google Scholar 

  25. Ajaya KN, Douglas AW, Samy AM, Joshua UO. Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules. 2006;39:7037–43.

    Article  CAS  Google Scholar 

  26. Konstantinos NR, Małgorzata J, Dionysia A, Edyta H, Krzysztof P, Polycarpos P. POSS along the hard segments of polyurethane. Phase Sep Mol Dyn Macromol. 2013;46:7378–86.

    Google Scholar 

  27. Lai YS, Tsai CW, Yang HW, Wang GP, Wu KH. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater Chem Phys. 2009;117:91–8.

    Article  CAS  Google Scholar 

  28. Stefano T, Marinella L. Structure, dynamic properties, and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomeric silsesquioxanes. Macromolecules. 2005;38:5569–74.

    Article  CAS  Google Scholar 

  29. Bruce XF, Benjamin SH, Henry W, Miriam R, Patrick TM, Hong GJ, Shawn P, Joseph L, Joseph S. Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym Int. 2000;49:437–40.

    Article  Google Scholar 

  30. Madhavan K, Gnanasekaran D, Reddy BSR. Synthesis and characterization of poly(dimethylsiloxane-urethane) nanocomposites: effect of (in)completely condensed silsesquioxanes on thermal, morphological, and mechanical properties. J Appl Polym Sci. 2009;114:3659–67.

    Article  CAS  Google Scholar 

  31. Yuan JL, Shiaowei K, YiChe S, Jemkun Ch, Chengwei T, Feng CCh. Syntheses, thermal properties, and phase morphologies of novel benzoxazines functionalized with polyhedral oligomeric silsesquioxane (POSS). Nanocomposites. 2004;45:6321–31.

    Google Scholar 

  32. Yusheng T, Wencai D, Lin T, YiKun Z, Jie K, Junwei G. Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun. 2018;8:36–41.

    Article  Google Scholar 

  33. Yunhe Z, Wei T, Yu Z, Lin T, Junwei G, Zhenhua J. Continuous carbon fiber/crosslinkable poly(ether ether ketone) laminated composites with outstanding mechanical properties, robust solvent resistance and excellent thermal stability. Compos Sci Technol. 2018;165:148–53.

    Article  CAS  Google Scholar 

  34. Bing H, Lin Y. Highly heat-resistant silicon-containing polyurethane–imide copolymers: synthesis and thermal mechanical stability. Eur Polym J. 2017;91:337–53.

    Article  CAS  Google Scholar 

  35. Sbirrazzuoli N, Brunel D, Elegant L. Different kinetic equations analysis. J Therm Anal Calorim. 1992;38:1509–24.

    Article  CAS  Google Scholar 

  36. Ngai KL, Roland CM. Chemical structure and intermolecular cooperativity: dielectric relaxation results. Macromolecules. 1993;26:6824–30.

    Article  CAS  Google Scholar 

  37. Jin L, Dezhu M. Study on synthesis and thermal properties of polyurethane–imide copolymers with multiple hard segments. J Appl Polym Sci. 2002;84:2206–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF) (No. U1530144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, B., Ye, L. Polyurethane–imide–polyhedral oligomeric silsesquioxane hybrid nano-composites. J Therm Anal Calorim 136, 2383–2396 (2019). https://doi.org/10.1007/s10973-018-7872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7872-9

Keywords

Navigation