Skip to main content
Log in

Effects of the nanofiller size and aspect ratio on the thermal and rheological behavior of PEG nanocomposites containing boehmites or hydrotalcites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, polyethylene glycol nanocomposites containing different nanofillers (namely hydrotalcites or boehmites, at 5 mass% loading) were prepared by melt compounding. Their morphology and microstructure were assessed by means of SEM and XRD analyses. The interactions between the different nanofillers and the polymer matrix were evaluated by performing rheological, differential scanning calorimetry and thermogravimetric analyses. The two types of nanofillers were found to differently interact with the polymer matrix. In particular, the rheological tests performed on the systems containing hydrotalcites revealed that the presence of nanofillers affects the relaxation dynamics of the macromolecular chains, in a remarkable way. Conversely, the crystallinity degree of the polymer was influenced by the presence of boehmites only, whose nucleating capability was found to depend on their average size. Finally, the thermo-oxidative stability of the polymer matrix was generally improved by the selected nanofillers, with the only exception of the organo-modified hydrotalcite that significantly anticipated the polymer degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci. 2016;60:86–128.

    Article  CAS  Google Scholar 

  2. Zakiyan SE, Azizi H, Ghasemi I. Influence of chain mobility on rheological, dielectric and electromagnetic interference shielding properties of polymethyl–methacrylate composites filled with graphene and carbon nanotube. Compos Sci Technol. 2017;142:10–9.

    Article  CAS  Google Scholar 

  3. Park JH, Kim H, Han DH, Lim JC, Oh DH, Min KE. Rheological behavior of hydrophilic silica dispersion in polyethylene glycol. J Appl Polym Sci. 2007;103:2481–6.

    Article  CAS  Google Scholar 

  4. Kotal M, Bhowmick AK. Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci. 2015;51:127–87.

    Article  CAS  Google Scholar 

  5. Rueda MM, Auscher MC, Fulchiron R, Périé T, Martin G, Sonntag P, Cassagneau P. Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci. 2017;66:22–53.

    Article  CAS  Google Scholar 

  6. Morreale M, Mistretta MC, Fiore V. Creep behavior of poly(lactic acid) based biocomposites. Materials. 2017;10:395.

    Article  Google Scholar 

  7. Bera M, Maji PK. Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer. 2017;119:118–23.

    Article  CAS  Google Scholar 

  8. Fujisawa S, Togawa E, Kuroda K. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion. Biomacromolecules. 2017;18:266–71.

    Article  CAS  Google Scholar 

  9. Bu J, Huang X, Li S, Jiang P. Significantly enhancing the thermal oxidative stability while remaining the excellent electrical insulating property of low density polyethylene by addition of antioxidant functionalized graphene oxide. Carbon. 2016;106:218–27.

    Article  CAS  Google Scholar 

  10. Zhang W, Camino G, Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci. 2017;67:77–125.

    Article  Google Scholar 

  11. Ameli A, Kazemi Y, Wang S, Park CB, Pötschke P. Process–microstructure–electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos Part A Appl Sci. 2017;96:28–36.

    Article  CAS  Google Scholar 

  12. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng. 2008;39:933–61.

    Article  Google Scholar 

  13. La Mantia FP, Arrigo R, Morreale M. Effect of the orientation and rheological behavior of biodegradable polymer nanocomposites. Eur Polym J. 2014;54:11–7.

    Article  Google Scholar 

  14. Khani MM, Woo D, Mumpower EL, Benicewicz BC. Poly(alkyl methacrylate)-grafted silica nanoparticles in polyethylene nanocomposites. Polymer. 2017;109:339–48.

    Article  CAS  Google Scholar 

  15. Boyne DA, Savage AM, Griep MH, Beyer FL, Orlicki JA. Process induced alignment of gold nano-rods (GNRs) in thermoplastic polymer composites with tailored optical properties. Polymer. 2017;110:250–9.

    Article  CAS  Google Scholar 

  16. Lu C, Mai YW. Influence of aspect ratio on barrier properties of polymer–clay nanocomposites. Phys Rev Lett. 2005;95:088303.

    Article  Google Scholar 

  17. Wu D, Wu L, Zhou W, Sun Y, Zhang M. Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Pol Phys. 2010;48:479–89.

    Article  CAS  Google Scholar 

  18. Pötschke P, Fornes TD, Paul DR. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 2002;43:3247–55.

    Article  Google Scholar 

  19. Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP. Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Pol Phys. 2014;52:73–83.

    Article  CAS  Google Scholar 

  20. Bhattacharya M. Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials. 2016;9:262.

    Article  Google Scholar 

  21. Mangiacapra P, Raimondo M, Tammaro L, Vittoria V. Nanometric dispersion of a Mg/Al layered double hydroxide into a chemically modified polycaprolactone. Biomacromolecules. 2007;8:773–9.

    Article  CAS  Google Scholar 

  22. Basu D, Das A, Stockelhuber KW, Wagenknecht U, Heinrich G. Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci. 2014;39:594–626.

    Article  CAS  Google Scholar 

  23. Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer. 2009;50:3564–74.

    Article  CAS  Google Scholar 

  24. Coriolano ACF, Alves AA, Araujo RA, Delgado RCOB, Carvalho FR, Fernandes VJ, Araujo AS. Thermogravimetry study of the ester interchange of sunflower oil using Mg/Al layered double hydroxides (LDH) impregnated with potassium. J Therm Anal Calorim. 2017;127:1863–7.

    Article  CAS  Google Scholar 

  25. Arrigo R, Dintcheva NT, Tarantino G, Passaglia E, Coiai S, Cicogna F, Filippi S, Nasillo G, Chillura Martino D. An insight into the interaction between functionalized thermoplastic elastomer and layered double hydroxides through rheological investigations. Compos Part B Eng. 2018;139:47–54.

    Article  CAS  Google Scholar 

  26. Coiai S, Passaglia E, Hermann A, Augier S, Pratelli D, Streller RC. The influence of the compatibilizer on the morphology and thermal properties of polypropylene-layered double hydroxide composites. Polym Compos. 2010;31:744–54.

    CAS  Google Scholar 

  27. Chen W, Qu B. Structural characteristics and thermal properties of PP-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chem Mater. 2003;15:3208–13.

    Article  CAS  Google Scholar 

  28. Lonkar SP, Therias S, Leroux F, Gardette JL, Singh RP. Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym Int. 2011;60:1688–96.

    Article  CAS  Google Scholar 

  29. Khumalo VM, Karger-Kocsis J, Thomann R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, mechanical, and perforation impact properties. J Mater Sci. 2011;46:422–8.

    Article  CAS  Google Scholar 

  30. Karger-Kocsis J, Lendvai L. Polymer/boehmite nanocomposites: a review. J Appl Polym Sci. 2018. https://doi.org/10.1002/app.45573 (in press).

    Article  Google Scholar 

  31. He X, Sun J, Xu X, Lv Z, Song J. Thermal analysis of phosphorus-modified boehmite nanosheets and isoelectric points (IEP) of the corresponding γ-alumina. J Therm Anal Calorim. 2017;130:2249–56.

    Article  CAS  Google Scholar 

  32. Bocchini S, Morlat-Therias S, Gardette JL, Camino G. Influence of nanodispersed boehmite on polypropylene photooxidation. Polym Degrad Stab. 2017;92:1847–56.

    Article  Google Scholar 

  33. Siengchin S, Karger-Kocsis J, Thomann R. Nanofilled and/or toughened POM composites produced by water-mediated melt compounding: structure and mechanical properties. Express Polym Lett. 2008;2:746–56.

    Article  CAS  Google Scholar 

  34. Ogunniran ES, Sadiku R, Sinha Ray S, Luruli N. Morphology and thermal properties of compatibilized PA12/PP blends with boehmite alumina nanofiller inclusions. Macromol Mater Eng. 2012;267:627–38.

    Article  Google Scholar 

  35. Khumalo VM, Karger-Kocsis J, Thomann R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. Express Polym Lett. 2010;5:264–74.

    Article  Google Scholar 

  36. Siengchin S, Karger-Kocsis J, Thomann R. Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: structure and properties. J Appl Polym Sci. 2007;105:2963–72.

    Article  CAS  Google Scholar 

  37. Streller RC, Thomann T, Torno O, Mulhaupt R. Isotactic poly(propylene) nanocomposites based upon boehmite nanofillers. Macromol Mater Eng. 2008;293:218–27.

    Article  CAS  Google Scholar 

  38. Shahid N, Villate RG, Barron AR. Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Compos Sci Technol. 2005;65:2250–8.

    Article  CAS  Google Scholar 

  39. Zhang C, Tang Z, Guo B. High-performance rubber/boehmite nanoplatelets composites by judicious in situ interfacial design. Compos Sci Technol. 2017;146:191–7.

    Article  CAS  Google Scholar 

  40. Malucelli G, Palmero P, Ronchetti S, Delmastro A, Montanaro L. Effect of various alumina nano-fillers on the thermal and mechanical behavior of low-density polyethylene-Al2O3 composites. Polym Int. 2010;59:1084–9.

    CAS  Google Scholar 

  41. Vuorinen E, Nhlapo N, Mafa T, Karger-Kocsis J. Thermooxidative degradation of LDPE nanocomposites: effect of surface treatments of fumed silica and boehmite alumina. Polym Degrad Stab. 2013;98:2297–305.

    Article  CAS  Google Scholar 

  42. Schindler A, Doedt M, Gezgin S, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J Therm Anal Calorim. 2017;129:833–42.

    Article  CAS  Google Scholar 

  43. Walter H, Brooks DE, Fisher D. Partitioning in aqueous two-phase systems. Orlando: Academic Press; 1985.

    Google Scholar 

  44. Katona G, Sipos P, Frohberg P, Ulrich J, Szabó-Révész P, Jójárt-Laczkovich O. Study of paracetamol-containing pastilles produced by melt technology. J Therm Anal Calorim. 2016;123:2549–59.

    Article  CAS  Google Scholar 

  45. Fisher D, Sutherland IA. Separations using aqueous phase systems: applications in cell biology and biotechnology. London: Plenum; 1989.

    Book  Google Scholar 

  46. Harris JM, Dust JM, McGill RA, Harris PA, Edgell MJ, Sedaghat-Herati RM, Karr LJ, Donnelly DL. New polyethylene glycols for biomedical applications. In: Water-soluble polymers. ACS symposium series. Washington: American Chemical Society; 1991. p. 418–29.

    Google Scholar 

  47. Jamiolkowski DD, Shalaby SW. A polymeric radiostabilizer for absorbable polyesters. In: Radiation effects on polymers. ACS symposium series. Washington: American Chemical Society; 1991. p. 300–9.

    Google Scholar 

  48. Pielichowski K, Flejtuch K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Adv Technol. 2002;13:690–6.

    Article  CAS  Google Scholar 

  49. Chatterjee T, Krishnamoorti R. Rheology of polymer carbon nanotubes composites. Soft Matter. 2013;9:9515–29.

    Article  CAS  Google Scholar 

  50. Gentile G, Ambrogi V, Cerruti P, Di Maio R, Nasti G, Carfagna C. Pros and cons of melt annealing on the properties of MWCNT/polypropylene composites. Polym Degrad Stab. 2014;110:56–64.

    Article  CAS  Google Scholar 

  51. Ferry JD. Viscoelastic properties of polymers. New York: Wiley; 1980.

    Google Scholar 

  52. La Mantia FP, Dintcheva NT, Filippone G, Acierno D. Structure and dynamics of polyethylene/clay films. J Appl Polym Sci. 2006;102:4749–58.

    Article  Google Scholar 

  53. Vivek R, Joseph K, Simon GP, Bhattacharyya AR. Melt-mixed composites of multi-walled carbon nanotubes and thermotropic liquid crystalline polymer: morphology, rheology and mechanical properties. Compos Sci Technol. 2017;151:184–92.

    Article  CAS  Google Scholar 

  54. Gleissle W, Hochstein B. Validity of the Cox–Merz rule for concentrated suspensions. J Rheol. 2003;47:897–993.

    Article  CAS  Google Scholar 

  55. Cavallaro G, De Lisi R, Lazzara G, Milioto S. Polyethylene glycol/clay nanotubes composites. Thermal properties and structure. J Therm Anal Calorim. 2013;112:383–90.

    Article  CAS  Google Scholar 

  56. Cavallaro G, Lazzara G, Milioto S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab. 2013;98:2529–36.

    Article  CAS  Google Scholar 

  57. Sun Q, Yuan Y, Zhang H, Cao X, Sun L. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim. 2017;130:1741–9.

    Article  CAS  Google Scholar 

  58. Lin YJ, Li DQ, Evans DG, Duan X. Modulating effect of Mg–Al–CO3 layered double hydroxides on the thermal stability of PVC resin. Polym Degrad Stab. 2005;88:286–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Malucelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrigo, R., Ronchetti, S., Montanaro, L. et al. Effects of the nanofiller size and aspect ratio on the thermal and rheological behavior of PEG nanocomposites containing boehmites or hydrotalcites. J Therm Anal Calorim 134, 1667–1680 (2018). https://doi.org/10.1007/s10973-018-7555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7555-6

Keywords

Navigation