Skip to main content
Log in

Polyethylene/synthetic boehmite alumina nanocomposites: structure, mechanical, and perforation impact properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Synthetic boehmite alumina (BA) has been incorporated up to 8 wt% in high-density polyethylene (HDPE) and low-density polyethylene (LDPE) by melt compounding. The primary nominal particle sizes of the two BA grades used were 40 and 74 nm, respectively. The dispersion of the BA in PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM). Specimens of the PE/BA nanocomposites were subjected to dynamic-mechanical thermal analysis (DMTA), static tensile and instrumented falling weight impact (IFWI) tests. It was established that BA was nanoscale dispersed in both HDPE and LDPE. According to DMTA, BA worked as reinforcing filler. This was confirmed in static mechanical tests, too. BA grades and contents influenced the static tensile and dynamic IFWI behaviors of the PE/BA nanocomposites differently. Surprisingly, BA incorporation enhanced the ductility (elongations at yield and break) of HDPE in contrast to LDPE. Unlike HDPE/BA nanocomposites, the perforation impact resistance of the LDPE/BA systems was reduced with increasing BA content at both ambient temperature and T = −30 °C. The lesser the reduction the higher the primary particle size of the BA was.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michler GH, Baltá-Calleja FJ (eds) (2005) Mechanical properties of polymers based on nanostructure and morphology. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  2. Utracki LA (2004) Clay-containing polymeric nanocomposites. Rapra Technology, Shawbury, Shropshire, UK

    Google Scholar 

  3. Dorigato A, Pegoretti A, Penati A (2010) eXPRESS Polym Lett 4:115. doi:10.3144/expresspolymlett.2010.16

    Article  CAS  Google Scholar 

  4. Karger-Kocsis J (2009) In: Karger-Kocsis J, Fakirov S (eds) Nano- and micro-mechanics of polymer blends and composites, chap 12. Hanser, Munich, p 425

    Google Scholar 

  5. Siengchin S, Karger-Kocsis J (2009) Compos Sci Technol 69:677. doi:10.1016/j.compscitech.2009.01.003

    Article  CAS  Google Scholar 

  6. Siengchin S, Karger-Kocsis J, Apostolov AA, Thomann R (2007) J Appl Polym Sci 106:248. doi:10.1002/app.26474

    Article  CAS  Google Scholar 

  7. Malucelli G, Palmero P, Ronchetti S, Delmastro A, Montanaro L (2010) Polym Int 59:1084. doi:10.1002/pi.2832

    CAS  Google Scholar 

  8. Halbach TS, Thomann Y, Mülhaupt R (2008) J Polym Sci Part A Polym Chem 46:2755. doi:10.1002/pola.22608

    Article  CAS  Google Scholar 

  9. Halbach TS, Mülhaupt R (2008) Polymer 49:867. doi:10.1016/j.polymer.2007.12.007

    Article  CAS  Google Scholar 

  10. Streller RC, Thomann R, Torno O, Mülhaupt R (2008) Macromol Mater Eng 293:218. doi:10.1002/mame.200700354

    Article  CAS  Google Scholar 

  11. Siengchin S, Karger-Kocsis J (2010) Composites Part A Appl Sci Manuf 41:768. doi:10.1016/j.compositesa.2010.02.009

    Article  Google Scholar 

  12. Siengchin S, Karger-Kocsis J, Thomann R (2007) J Appl Polym Sci 105:2963. doi:10.1002/app.26505

    Article  CAS  Google Scholar 

  13. Khumalo VM, Karger-Kocsis J, Thomann R (2010) eXPRESS Polym Lett 4:264. doi:10.3144/expresspolymlett.2010.34

    Article  CAS  Google Scholar 

  14. Molefi JA, Luyt AS, Krupa I (2010) J Mater Sci 45:82. doi:10.1007/s10853-009-3894-9

    Article  CAS  Google Scholar 

  15. Popli R, Glotin M, Mandelkern L, Benson RS (1984) J Polym Sci Polym Phys Ed 22:407. doi:10.1002/pol.1984.180220306

    Article  CAS  Google Scholar 

  16. Bucknall CB (1992) Plast Rubb Compos Process Appl 17:141

    CAS  Google Scholar 

Download references

Acknowledgements

This work was part of a collaboration project between Hungary and Republic of South Africa (RSA). The authors thank Prof. S. Sinha Ray (Nanocenter—Council for Scientific and Industrial Research, Pretoria, RSA) for preparation and testing facilities. The BA was kindly provided by Dr. O. Torno (Sasol GmbH, Hamburg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karger-Kocsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khumalo, V.M., Karger-Kocsis, J. & Thomann, R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, mechanical, and perforation impact properties. J Mater Sci 46, 422–428 (2011). https://doi.org/10.1007/s10853-010-4882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4882-9

Keywords

Navigation