Skip to main content
Log in

Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The carbon nanotubes are considered as one of the highest thermal conductive material which is having a variety of heat transfer applications. The suitability of carbon nanotubes in convective heat transfer is examined using multi-wall carbon nanotubes (MWCNT)-thermal oil-based nanofluids. Stable nanofluids are prepared in the concentration range of 0–1 mass% and Prandtl number range of 415 ≤ Pr ≤ 600 using ultrasonication. The natural convection heat transfer behavior is studied experimentally in a vertical rectangular enclosure with aspect ratio 4. The heat transfer experiments are conducted at varying heat flux in the range of 1594–3150 W m−2. The heat transfer coefficient, Nusselt number and Rayleigh number are estimated for MWCNT-thermal oil-based nanofluids and are compared with pure thermal oil. A significant deterioration in heat transfer coefficient is observed at higher concentrations of nanofluids. The study signifies the adverse impact on the cooling performance of MWCNT-thermal oil-based nanofluids in natural convection heat transfer, even though higher thermal conductivities are observed in nanofluids. It is found that not only thermal conductivity is essential property in heat transfer, but other thermophysical properties are also influential towards thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from [36]

Fig. 3
Fig. 4

Reproduced with permission from [18]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A\) :

Heat transfer area in the test cell (m2)

\({\text{AR}}\) :

Aspect ratio (m)

\(Cp\) :

Specific heat capacity of cooling water (kJ kg−1 °C)

\(Cp_{\text{bf}}\) :

Specific heat capacity of base-fluid (kJ kg−1 °C)

\(Cp_{\text{nf}}\) :

Specific heat capacity of nanofluid (kJ kg−1 °C)

\(E_{{{\text{h}},\;\hbox{max} }}\) :

Maximum possible uncertainty for heat transfer coefficient (–)

\(E_{\text{I}}\) :

Maximum possible uncertainty for ammeter (–)

\(E_{\text{MB}}\) :

Maximum possible uncertainty for mass balance (–)

\(E_{\text{T}}\) :

Maximum possible uncertainty for temperature (–)

\(E_{\text{V}}\) :

Maximum possible uncertainty for voltmeter (–)

\(g\) :

Acceleration due to gravity (m s−2)

\(Gr\) :

Grashof number (–)

\(h\) :

Heat transfer coefficient (W m−2 °C)

\(I\) :

Current (Ampere)

\(k_{\text{bf}}\) :

Thermal conductivity of base-fluid (W m−1 °C)

\(k_{\text{nf}}\) :

Thermal conductivity of nanofluid (W m−1 °C)

\(k_{\text{w}}\) :

Thermal conductivity of the wall (W m−1 °C)

\(m\) :

Mass flow rate of cooling water (kg s−1)

\(m_{\text{bf}}\) :

Mass of base-fluid (kg)

\(m_{\text{np}}\) :

Mass of nanoparticle (kg)

\(Nu\) :

Nusselt number (–)

\(Pr\) :

Prandtl number (–)

\(q\) :

Heat flux (W m−2)

\(Q\) :

Heat transfer rate (W)

\(Q_{\text{C}}\) :

Heat transfer rate at the cold side (W)

\(Q_{\text{H}}\) :

Heat transfer rate at the hot side (W)

\(Ra\) :

Rayleigh number (–)

\(t\) :

Time (s)

\(T\) :

Temperature (°C)

\(T_{\text{avg}}\) :

Average temperature (°C)

\(T_{\text{C}}\) :

Corrected surface temperature of the cold wall (°C)

\(T_{{{\text{C}},\,{\text{out}}}}\) :

Temperature of cold wall (°C)

\(T_{\text{H}}\) :

Corrected surface temperature of the hot wall (°C)

\(T_{{{\text{H}},\,{\text{out}}}}\) :

Temperature of hot wall (°C)

\(T_{\text{in}}\) :

Temperature of cooling water inlet (°C)

\(T_{\text{out}}\) :

Temperature of cooling water outlet (°C)

\(V\) :

Voltage (V)

\({\text{wt}}.{\text{fr}}\) :

Weight fraction of nanoparticles in nanofluid (–)

\(x\) :

Position of the thermocouples (m)

\(x_{\text{w}}\) :

Thickness of the wall (m)

\(\beta\) :

Coefficient of thermal expansion (1/°C)

\(\beta_{\text{bf}}\) :

Coefficient of thermal expansion of base-fluid (1/°C)

\(\beta_{\text{nf}}\) :

Coefficient of thermal expansion of nanofluid (1/°C)

\(\beta_{\text{np}}\) :

Coefficient of thermal expansion of nanoparticle (1/°C)

\(\varphi_{\text{P}}\) :

Weight fraction of nanoparticles (–)

\(\varphi_{\text{v}}\) :

Volume fraction of nanoparticles (–)

\(\rho\) :

Density (kg m−3)

\(\rho_{\text{bf}}\) :

Density of base-fluid (kg m−3)

\(\rho_{\text{nf}}\) :

Density of nanofluid (kg m−3)

\(\rho_{\text{np}}\) :

Density of nanoparticle (kg m−3)

\(\mu\) :

Viscosity (Pa s)

\(\mu_{\text{bf}}\) :

Viscosity of base-fluid (Pa s)

\(\mu_{\text{nf}}\) :

Viscosity of nanofluid (Pa s)

\(\delta\) :

Distance between hot and cold walls (m)

References

  1. Bahiraei M, Hangi M, Saeedan M. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy. 2015;93:2229–40.

    Article  CAS  Google Scholar 

  2. Hussien AA, Abdullah MZ, Al-Nimr MDA. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: theory and applications. Appl Energy. 2016;164:733–55.

    Article  CAS  Google Scholar 

  3. Shariatmadar FS, Pakdehi SG. Synthesis and characterization of aviation turbine kerosene nanofuel containing boron nanoparticles. Appl Therm Eng. 2017;112:1195–204.

    Article  CAS  Google Scholar 

  4. Ghaderian J, Sidik NAC, Kasaeian A, Ghaderian S, Okhovat A, Pakzadeh A, Samion S, Yahya WJ. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations. Appl Therm Eng. 2017;121:520–36.

    Article  CAS  Google Scholar 

  5. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  6. Bashirnezhad K, Ghavami M, Alrashed AAAA. Experimental investigations of nanofluids convective heat transfer in different flow regimes: a review. J Mol Liq. 2017;244:309–21.

    Article  CAS  Google Scholar 

  7. Ilyas SU, Pendyala R, Marneni N. Preparation, sedimentation, and agglomeration of nanofluids. Chem Eng Technol. 2014;37:2011–21.

    Article  CAS  Google Scholar 

  8. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.

    Article  CAS  Google Scholar 

  9. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132:1001–15.

    Article  CAS  Google Scholar 

  10. Pendyala R, Ilyas SU, Lim LR, Marneni N. CFD analysis of heat transfer performance of nanofluids in distributor transformer. Proc Eng. 2016;148:1162–9.

    Article  CAS  Google Scholar 

  11. Kasaeipoor A, Malekshah EH, Kolsi L. Free convection heat transfer and entropy generation analysis of MWCNT-MgO (15%–85%)/Water nanofluid using Lattice Boltzmann method in cavity with refrigerant solid body-experimental thermo-physical properties. Powder Technol. 2017;322:9–23.

    Article  CAS  Google Scholar 

  12. Kolsi L, Mahian O, Öztop HF, Aich W, Borjini MN, Abu-Hamdeh N, Aissia HB. 3D buoyancy-induced flow and entropy generation of nanofluid-filled open cavities having adiabatic diamond shaped obstacles. Entropy. 2016;18:232.

    Article  CAS  Google Scholar 

  13. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128:1765–70.

    Article  CAS  Google Scholar 

  14. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  15. Rahimi A, Kasaeipoor A, Malekshah EH, Kolsi L. Experimental and numerical study on heat transfer performance of three-dimensional natural convection in an enclosure filled with DWCNTs-water nanofluid. Powder Technol. 2017;322:340–52.

    Article  CAS  Google Scholar 

  16. Kolsi L, Lajnef E, Aich W, Alghamdi A, Aichouni MA, Borjini MN, Aissia HB. Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid. Alex Eng J. 2017;56:71–9.

    Article  Google Scholar 

  17. Narahari M, Raju SSK, Pendyala R, Pop I. Transient two-dimensional natural convection flow of a nanofluid past an isothermal vertical plate using Buongiorno’s model. Int J Numer Method Heat Fluid Flow. 2017;27:23–47.

    Article  Google Scholar 

  18. Ilyas SU, Pendyala R, Narahari M. An experimental study on the natural convection heat transfer in rectangular enclosure using functionalized alumina-thermal oil-based nanofluids. App Therm Eng. 2017;127:765–75.

    Article  CAS  Google Scholar 

  19. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11:512–23.

    Article  CAS  Google Scholar 

  20. Hu Y, He Y, Qi C, Jiang B, Schlaberg HI. Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int J Heat Mass Transf. 2014;78:380–92.

    Article  CAS  Google Scholar 

  21. Mahrood MRK, Etemad SG, Bagheri R. Free convection heat transfer of non Newtonian nanofluids under constant heat flux condition. Int Commun Heat Mass Transf. 2011;38:1449–54.

    Article  CAS  Google Scholar 

  22. Li H, He Y, Hu Y, Jiang B, Huang Y. Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids. Int J Heat Mass Transf. 2015;91:385–9.

    Article  CAS  Google Scholar 

  23. Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118:1451–60.

    Article  CAS  Google Scholar 

  24. Amiri A, Kazi SN, Shanbedi M, Zubir MNM, Yarmand H, Chew BT. Transformer oil based multi-walled carbon nanotube-hexylamine coolant with optimized electrical, thermal and rheological enhancements. RSC Adv. 2015;5:107222–36.

    Article  CAS  Google Scholar 

  25. Thomas S., Sobhan CB, Taha-Tijerina J, Narayanan TN, Ajayan PM. Investigations on transient natural convection in boron nitride-mineral oil nanofluid systems, ASME international mechanical engineering congress and exposition, vol 9: Micro- and nano-systems engineering and packaging, parts A and B (2012); 671–678. https://doi.org/10.1115/imece2012-87420.

  26. Heris SZ, Pour MB, Mahian O, Wongwises S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. Int J Heat Mass Transf. 2014;73:231–8.

    Article  CAS  Google Scholar 

  27. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2003;39:775–84.

    Article  Google Scholar 

  28. Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53.

    Article  CAS  Google Scholar 

  29. Kouloulias K, Sergis A, Hardalupas Y. Sedimentation in nanofluids during a natural convection experiment. Int J Heat Mass Transf. 2016;101:1193–203.

    Article  CAS  Google Scholar 

  30. Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow. 2005;26:855–64.

    Article  CAS  Google Scholar 

  31. Nnanna AG. Experimental model of temperature-driven nanofluid. J Heat Transf. 2006;129:697–704.

    Article  CAS  Google Scholar 

  32. Ni R, Zhou S-Q, Xia K-Q. An experimental investigation of turbulent thermal convection in water-based alumina nanofluid. Phys Fluids. 2011;23:022005.

    Article  CAS  Google Scholar 

  33. Li CH, Peterson GP. Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids). Adv Mech Eng. 2010;2:742739.

    Article  CAS  Google Scholar 

  34. Choudhary R, Subudhi S. Aspect ratio dependence of turbulent natural convection in Al2O3/water nanofluids. Appl Therm Eng. 2016;108:1095–104.

    Article  CAS  Google Scholar 

  35. Xing M, Yu J, Wang R. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int J Therm Sci. 2016;104:404–11.

    Article  CAS  Google Scholar 

  36. Ilyas SU, Pendyala R, Narahari M. Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf A. 2017;527:11–22.

    Article  CAS  Google Scholar 

  37. Ilyas SU, Pendyala R, Narahari M. Stability of Nanofluids. In: Korada VS, Hisham BHN, editors. Engineering applications of nanotechnology: from energy to drug delivery. Cham: Springer; 2017. p. 1–31.

    Google Scholar 

  38. Ilyas SU, Pendyala R, Narahari M. Stability and agglomeration of alumina nanoparticles in ethanol-water mixtures. Proc Eng. 2016;148:290–7.

    Article  CAS  Google Scholar 

  39. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  40. Bayat J, Nikseresht AH. Thermal performance and pressure drop analysis of nanofluids in turbulent forced convective flows. Int J Therm Sci. 2012;60:236–43.

    Article  CAS  Google Scholar 

  41. Ilyas SU, Pendyala R, Shuib A, Marneni N. A review on the viscous and thermal transport properties of nanofluids. Adv Mater Res. 2014;917:18–27.

    Article  CAS  Google Scholar 

  42. Sridhara V, Satapathy LN. Effect of nanoparticles on thermal properties enhancement in different oils—a review. Crit Rev Solid State. 2015;40:399–424.

    Article  CAS  Google Scholar 

  43. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.

    Article  CAS  Google Scholar 

  44. Ilyas SU, Pendyala R, Narahari M, Susin L. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems. Energ Convers Manag. 2017;142:215–29.

    Article  CAS  Google Scholar 

  45. Pakravan HA, Yaghoubi M. Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids. Int J Therm Sci. 2011;50:394–402.

    Article  CAS  Google Scholar 

  46. Tzou DY. Thermal instability of nanofluids in natural convection. Int J Heat Mass Transf. 2008;51:2967–79.

    Article  CAS  Google Scholar 

  47. Bahiraei M. Particle migration in nanofluids: a critical review. Int J Therm Sci. 2016;109:90–113.

    Article  CAS  Google Scholar 

  48. Mahdavi M, Sharifpur M, Meyer JP. Simulation study of convective and hydrodynamic turbulent nanofluids by turbulence models. Int J Therm Sci. 2016;110:36–51.

    Article  CAS  Google Scholar 

  49. Hwang KS, Lee J-H, Jang SP. Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. Int J Heat Mass Transf. 2007;50:4003–10.

    Article  CAS  Google Scholar 

  50. Mewis J, Wagner NJ. Colloidal suspension rheology. Cambridge: Cambridge University Press; 2012.

    Google Scholar 

  51. Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.

    Article  CAS  Google Scholar 

  52. Ashrafmansouri S-S, Esfahany MN. Mass transfer in nanofluids: a review. Int J Therm Sci. 2014;82:84–99.

    Article  CAS  Google Scholar 

  53. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  54. Meng X, Zhang X, Li Q. Numerical investigation of nanofluid natural convection coupling with nanoparticles sedimentation. Appl Therm Eng. 2016;95:411–20.

    Article  CAS  Google Scholar 

  55. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  56. Pendyala R, Jayanti S, Balakrishnan AR. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations. Nucl Eng Des. 2008;238:178–87.

    Article  CAS  Google Scholar 

  57. Pendyala R, Jayanti S, Balakrishnan AR. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations. Heat Mass Transf. 2008;44:857–64.

    Article  Google Scholar 

  58. Heris SZ, Edalati Z, Noie SH, Mahian O. Experimental investigation of Al2O3/water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow. Heat Transf Eng. 2013;35:1173–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Chemical Engineering Department of Universiti Teknologi PETRONAS. The financial assistance is provided by YUTP 0153AA-E28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashekhar Pendyala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, S.U., Pendyala, R. & Narahari, M. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J Therm Anal Calorim 135, 1197–1209 (2019). https://doi.org/10.1007/s10973-018-7546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7546-7

Keywords

Navigation