Skip to main content
Log in

Density and rheological properties of different nanofluids based on diesel oil at different mass concentrations

An experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, various nanofluids were synthesized and investigated in order to evaluate the density and viscosity of carbon nanoparticles suspension-based diesel oil (DO). The experiments were performed to measure the density and viscosity of several nanofluids containing nanoparticles of multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) in the form of non-covalent with surfactant oleic acid (OA) and covalent with hexylamine (HA). These particles were individually functionalized with hexylamine. Then, five different nanofluids including graphene-HA/DO, multi-walled carbon nanotubes-HA/DO, graphene-OA/DO, carbon nanotubes-OA/DO, and a hybrid of nanographene plates and multi-walled carbon nanotubes-OA/DO at concentrations of 0.05, 0.1, 0.2, and 0.5 mass% were synthesized. The density and viscosity of these nanofluids were studied at temperatures of 5–100 °C. The results show that by increasing temperature, viscosity, shear stress, and density decreased for all mass concentrations. Also, an increase in mass concentration led to an increase in viscosity and shear stress, density, and viscosity index of all nanofluids compared with the pure DO at the constant temperature. The maximum increases in viscosity and density are, respectively, for HA-MWCNT/DO and OA-MWCNT at 0.5 mass% and 5 °C that is equal to 1.474 Pa. s for viscosity (82% more than viscosity of pure oil at 5 °C) and is 0.871 g cm−3 for density (12% more than density of pure oil at 5 °C). A comparison between MWCNT and GNP revealed that in all nanofluids, the viscosity of OA-MWCNT/DO is more than that of OA-GNP/DO and in most of the nanofluids the density of OA-GNP/DO is more than that of OA-MWCNT/DO. For example, at 0.5 mass% and 5 °C, the viscosity of OA-MWCNT/DO is 2.1% higher than that of OA-GNP/DO while the density of OA-GNP/DO is 0.34% higher than OA-MWCNT/DO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60. https://doi.org/10.1080/01457630701850851.

    Article  CAS  Google Scholar 

  2. Sundar LS, Hortiguela MJ, Singh MK, Sousa ACM. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: an experimental study. Int Commun Heat Mass Transf. 2016;76(Supplement C):245–55. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.025.

    Article  CAS  Google Scholar 

  3. Estellé P, Halelfadl S, Maré T. Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. J Therm Anal Calorim. 2017;127(3):2075–81. https://doi.org/10.1007/s10973-016-5833-8.

    Article  CAS  Google Scholar 

  4. Kole M, Dey TK. Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int J Therm Sci. 2011;50(9):1741–7. https://doi.org/10.1016/j.ijthermalsci.2011.03.027.

    Article  CAS  Google Scholar 

  5. Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J. 2013;231(Supplement C):365–72. https://doi.org/10.1016/j.cej.2013.07.006.

    Article  CAS  Google Scholar 

  6. Hung Y-H, Chou W-C. Chitosan for suspension performance and viscosity of MWCNTs. Int J Chem Eng Appl. 2012;3(5): 347–53. https://doi.org/10.7763/IJCEA.2012.V3.215.

    Article  CAS  Google Scholar 

  7. Saeedinia M, Akhavan-Behabadi MA, Razi P. Thermal and rheological characteristics of CuO—base oil nanofluid flow inside a circular tube. Int Commun Heat Mass Transf. 2012;39(1):152–9. https://doi.org/10.1016/j.icheatmasstransfer.2011.08.001.

    Article  CAS  Google Scholar 

  8. Xie H, Yu W, Chen W. MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J Exp Nanosci. 2010;5(5):463–72. https://doi.org/10.1080/17458081003628949.

    Article  CAS  Google Scholar 

  9. Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid FlowVolume. 2007;28(6):1492–506. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004.

    Article  CAS  Google Scholar 

  10. Vakili-Nezhaad GR, Dorany A. Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts. Chem Eng Commun. 2009;196(9):997–1007. https://doi.org/10.1080/00986440902797865.

    Article  CAS  Google Scholar 

  11. Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60. https://doi.org/10.1007/s10973-014-4048-0.

    Article  CAS  Google Scholar 

  12. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67. https://doi.org/10.1007/s10973-017-6213-8.

    Article  CAS  Google Scholar 

  13. Shanbedi M, Zeinali Heris S, Maskooki A. Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J Therm Anal Calorim. 2015;120(2):1193–201. https://doi.org/10.1007/s10973-015-4404-8.

    Article  CAS  Google Scholar 

  14. Shahsavani E, Afrand M, Kalbasi R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6711-8.

    Article  Google Scholar 

  15. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24. https://doi.org/10.1007/s10973-014-4328-8.

    Article  CAS  Google Scholar 

  16. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15. https://doi.org/10.1007/s10973-018-7009-1.

    Article  CAS  Google Scholar 

  17. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22. https://doi.org/10.1007/s10973-017-6372-7.

    Article  CAS  Google Scholar 

  18. Madhu P, Rajasekhar P. Measurement of density and specific heat capacity of different nanofluids. IJARIIT. 2017;3(1):165–70.

    Google Scholar 

  19. Amiri A, Kazi S, Shanbedi M, Zubir MNM, Yarmand H, Chew B. Transformer oil based multi-walled carbon nanotube–hexylamine coolant with optimized electrical, thermal and rheological enhancements. RSC Advances. 2015;5(130):107222–36.

    Article  CAS  Google Scholar 

  20. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180–92. https://doi.org/10.1002/smll.200400118.

    Article  CAS  PubMed  Google Scholar 

  21. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew BT, Kazi SN, et al. Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manag. 2015;92:322–30. https://doi.org/10.1016/j.enconman.2014.12.051.

    Article  CAS  Google Scholar 

  22. Zhang Q, Li W, Kong T, Su R, Li N, Song Q, et al. Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon. 2013;51:164–72. https://doi.org/10.1016/j.carbon.2012.08.025.

    Article  CAS  Google Scholar 

  23. Afrand M, Nazari Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102(Supplement C):45–54. https://doi.org/10.1016/j.applthermaleng.2016.04.002.

    Article  CAS  Google Scholar 

  24. Zadeh AD, Toghraie D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim. 2018;131(2):1449–61. https://doi.org/10.1007/s10973-017-6696-3.

    Article  CAS  Google Scholar 

  25. Mishra PC, Mukherjee S, Nayak SK, Panda A. A brief review on viscosity of nanofluids. Int Nano Lett. 2014;4(4):109–20. https://doi.org/10.1007/s40089-014-0126-3.

    Article  CAS  Google Scholar 

  26. Teng T-P, Hung Y-H. Estimation and experimental study of the density and specific heat for alumina nanofluid. J Exp Nanosci. 2014;9(7):707–18. https://doi.org/10.1080/17458080.2012.696219.

    Article  CAS  Google Scholar 

  27. Montazer E, Salami E, Yarmand H, Chowdhury ZZ, Dahari M, Kazi SN, et al. Development of a new density correlation for carbon-based nanofluids using response surface methodology. J Therm Anal Calorim. 2018;132(2):1399–407. https://doi.org/10.1007/s10973-018-6978-4.

    Article  CAS  Google Scholar 

  28. Vajjha RS, Das DK, Mahagaonkar BM. Density measurement of different nanofluids and their comparison with theory. Pet Sci Technol. 2009;27(6):612–24. https://doi.org/10.1080/10916460701857714.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to South Pars Gas Company (SPGC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zeinali Heris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naddaf, A., Zeinali Heris, S. Density and rheological properties of different nanofluids based on diesel oil at different mass concentrations. J Therm Anal Calorim 135, 1229–1242 (2019). https://doi.org/10.1007/s10973-018-7456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7456-8

Keywords

Navigation