Skip to main content
Log in

Effect of additives on sintering of zirconia ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of two types of additives on the sintering processes of zirconium ceramics was investigated. The impact of both polyvinyl alcohol (12 mass%) and bismuth oxide (1 mass%) on compaction of ultradisperse powders of stabilized zirconia produced by plasma-chemical method and on densification of the compacts during sintering was studied. In the initial state, plasma-chemical powders demonstrate hindered compactibility and sinterability. The additives were incorporated through mechanical stirring with intermediate sieving using a sieve. It was found that introduction of polyvinyl alcohol significantly reduces wall friction and hence facilitates the compaction process. However, no effect on densification and sintering kinetics was observed. Incorporation of bismuth oxide microadditives decreases the temperature of the peak compacting rate. In one-step sintering, the compacts are found to markedly expand at the isothermal ageing stage. The expansion is more distinct at increased compaction pressure. It is shown that this expansion is associated with an increase in the volume of pores surrounded by the liquid phase of bismuth oxide. Two-step sintering with an intermediate stage of isothermal ageing at 1200 °C shows a 100 °C decrease in the sintering temperature, no expansion of the samples occurs at the final ageing stage at sintering temperature, and the ceramics produced exhibits good operational parameters. Recommendations are given on the use of low-melting microadditives in sintering ultradisperse powders obtained by plasma-chemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature. 1975;258:703–4.

    Article  CAS  Google Scholar 

  2. Nettleship I, Stevens R. Tetragonal zirconia polycrystal (TZP)—a review. Int J High Technol Ceram. 1987;3:1–32.

    Article  CAS  Google Scholar 

  3. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: from veneered to monolithic. Part I. J Quintessence Int. 2017;48:369–80.

    Google Scholar 

  4. Tailor S, Singh M, Doub AV. Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. J Clust Sci. 2016;27:1097–107.

    Article  CAS  Google Scholar 

  5. Freris I, Riello P, Enrichi F, Cristofori D, Benedetti A. Synthesis and optical properties of sub-micron sized rare earth-doped zirconia particles. J Opt Mater. 2011;33:1745–52.

    Article  CAS  Google Scholar 

  6. He J, Chen J, Ren L, Wang Y, Teng C, Hong M, Zhao J, Jiang B. Fabrication of monodisperse porous zirconia microspheres and their phosphorylation for Friedel-Crafts alkylation of indoles. J ACS Appl Mater Interfaces. 2014;6:2718–25.

    Article  CAS  Google Scholar 

  7. Uchiyama H, Takagi K, Kozuka H. Solvothermal synthesis of size-controlled ZrO2 microspheres via hydrolysis of alkoxides modified with acetylacetone. Colloids Surf A Physicochem Eng Asp. 2012;403:121–8.

    Article  CAS  Google Scholar 

  8. Ghyngazov SA, Frangulyan TS. Impact of pressure in static and dynamic pressing of zirconia ultradisperse powders on compact density and compaction efficiency during sintering. Ceram Int. 2017;43:16555–9.

    Article  CAS  Google Scholar 

  9. Bortzmeyer D. Dry pressing of ceramic powders. In: Ceramic processing. 1995:102–46.

  10. Rice WR. Hot forming of ceramics. In: Ultrafine-grain ceramics. 1970:203–50.

  11. Chaika ÉV. Isostatic pressing of ceramic articles in thermoplastic molds. Glass Ceram. 2016;73(3–4):91–3.

    Article  CAS  Google Scholar 

  12. Papitha R, Suresh MB, Rao YS, Saha BP, Das D, Johnson R. Pressure slip casting and cold isostatic pressing of aluminum titanate green ceramics: a comparative evaluation. Process Appl Ceram. 2013;7(4):159–66.

    Article  CAS  Google Scholar 

  13. Lamarre SG, Demers V, Chatelain J-F. Low-pressure powder injection molding using an innovative injection press concept. Int J Adv Manuf Technol. 2017;91(5–8):2595–605.

    Article  Google Scholar 

  14. Li W, Ghazanfari A, Leu MC, Landers RG. Extrusion-on-demand methods for high solids loading ceramic paste in freeform extrusion fabrication. Virtual Phys Prototype. 2017;12(3):193–205.

    Article  Google Scholar 

  15. Schafföner S, Aneziris CG. Pressure slip casting of coarse grain oxide ceramics. Ceram Int. 2012;38(1):417–22.

    Article  CAS  Google Scholar 

  16. Gutierrez CA, Moreno R. Influence of slip preparation and casting conditions on aqueous tape casting of Al2O3. Mater Res Bull. 2001;36(11):2059–72.

    Article  CAS  Google Scholar 

  17. Junhui X. Study of a novel process-instant solidification of aqueous gel-tape-casting for ceramic sheet formation. Chinese Dissertation of Tsinghua University. Beijing. 2001.

  18. Hotza D, Greil P. Review: aqueous tape casting of ceramic power. Mater Sci Eng A. 1995;202:206–17.

    Article  Google Scholar 

  19. Bakunova NB, Barinov SM, Ievlev VM, Komlev VS, Titov DD. Effect of thermal treatment on sintering and strength of ceramics from hydroxyapatite nanopowders. Inorg Mater Appl Res. 2011;2(4):377–80.

    Article  Google Scholar 

  20. Ivashutenko AS, Frangulyan TS, Ghyngazov SA, Petrova AB. Sintering of zirconia ceramics using microwave and spark heating techniques. In: IOP conference series: mater science and engineering. 2016;110(1). https://doi.org/10.1088/1757-899x/110/1/012105.

  21. Tokita M. Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol. 1993;30:790–804.

    Article  CAS  Google Scholar 

  22. Muccillo ENS, Souza ECC, Muccillo R. Synthesis of reactive neodymia-doped zirconia powders by the sol–gel technique. J Alloys Compd. 2002;344(1–2):175–8.

    Article  CAS  Google Scholar 

  23. Trusova EA, Khrushcheva AA, Vokhmintcev KV. Sol-gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. J Eur Ceram Soc. 2012;32(9):1977–81.

    Article  CAS  Google Scholar 

  24. Kuzjukevics A, Linderoth S, Grabis J. Characterization of yttria-doped zirconia powders produced by plasma-chemical method. Solid State Ionics. 1996;92(3–4):253–60.

    Article  CAS  Google Scholar 

  25. Flegler AG, Burye TE, Yang Q, Nicholas JD. Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram Int. 2014;40(PB):16323–35.

    Article  CAS  Google Scholar 

  26. Restivo TAG, Durazzo M, de Mello-Castanho SRH, Moreira AC, Graciano S, Telles VB, Tenorio JAS. Low-temperature densification of ceramics and cermets by the intermediary stage activated sintering method. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6560-5.

    Article  Google Scholar 

  27. Li J, Zhang X-H, Cui B-C, Lin Y-H, Deng X-L, Li M, Nan C-W. Mechanical performance of polymer-infiltrated zirconia ceramics. J Dent. 2017;58:60–6.

    Article  CAS  PubMed  Google Scholar 

  28. Surzhikov AP, Frangylyan TS, Ghyngazov SA. A dilatometric study of the effect of pressing on the kinetics of compression of ultrafine zirconium dioxide powders under thermal annealing. Russ Phys J. 2012;55(4):345–52.

    Article  CAS  Google Scholar 

  29. Batista RM, Muccillo ENS. Analysis of the sintering process in gadolinia-doped ceria by thermodilatometry and correlation with microstructure evolution. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6969-5.

    Article  Google Scholar 

  30. Łada P, Miazga A, Konopka K, Szafran M. Sintering behavior and thermal expansion of zirconia–titanium composites. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6817-z.

    Article  Google Scholar 

  31. Surzhikov AP, Ghyngazov SA, Frangulyan TS, Vasil’ev IP, Chernyavskii AV. Investigation of sintering behaviour of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis. J Therm Anal Calorim. 2017;128:787–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Science Foundation Grant No. 17-19-01082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, S.A., Shevelev, S.A. Effect of additives on sintering of zirconia ceramics. J Therm Anal Calorim 134, 45–49 (2018). https://doi.org/10.1007/s10973-018-7249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7249-0

Keywords

Navigation