Skip to main content
Log in

Thermal comparison and multi-objective optimization of single-stage aqua-ammonia absorption cooling system powered by different solar collectors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the comprehensive thermodynamic modelling to compare the performance and optimization of single-stage NH3–H2O-type absorption cooling system integrated with different solar collector types for the city of Mehsana, India. A 20-kW system at 0 °C is analysed which includes four different solar collectors flat-plate collectors, parabolic-trough collectors (PTC), flat plate with compound parabolic collector reflectors and evacuated-tube collectors (ETC) attached with insulated thermal storage tank to power the NH3–H2O vapour absorption system. The study investigated the effect of heat source temperature on performance aspects of systems. The examined performance parameters are exergetic efficiency, coefficient of performance and area of collector. Exergetic optimization of each system estimated the optimum collecting area requirement for cooling. Differentiation between optimized systems determined that the optimum cost, SCOP and ηII,system of PTC-type system are averagely 30, 11 and 0.5% higher than ETC-type system at different ambient temperatures. For effective comparison and conclusion, key performance indicator is evaluated to select optimum system configuration from both thermodynamic and economic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C collectorr :

Specific cost of collector (€ m−2)

C p :

Specific heat (kJ kg−1 K−1)

C R :

Area concentration ratio

E X :

Exergy (kW)

G b :

Beam irradiance (W m−2)

G d :

Diffused irradiance (W m−2)

G T :

Irradiance (W m−2)

m · :

Mass flow rate (kg s−1)

M :

Water mass in storage tank (kg)

P :

Pressure (kPa)

Q · :

Heat load (kW)

R b :

Beam radiation factor

SCOP:

Solar COP

T :

Temperature (K)

U L :

Overall heat loss coefficient (W m−2 K−1)

W · :

Work (kW)

η :

Efficiency

ρ w :

Water density (kg m−3)

η I :

First law efficiency

η II :

Second law efficiency

β :

Inclination of collector (°)

ρ :

Ground reflectance

ϕ :

Latitude (°)

A :

Absorber

C :

Condenser

E :

Evaporator

G :

Generator

in:

Inlet stream

min:

Minimum

out:

Outlet stream

P :

Pump

r :

Refrigerant

st:

Storage tank

st1:

Tank first zone

st2:

Tank second zone

st3:

Tank third zone

sun:

Sun

ss:

Strong solution

ws:

Weak solution

o :

Ambient

CFC:

Chlorofluorocarbons

COP:

Coefficient of performance

CPC:

Flat plate with compound parabolic collector reflectors

ETC:

Evacuated tube collector

FPC:

Flat-plate collector

HCHC:

Hydrochlorofluorocarbons

PTC:

Parabolic-trough collector

VARS:

Vapour absorption refrigeration system

VCRS:

Vapour compression refrigeration system

References

  1. Wu S, Eames IW. Innovations in vapour-absorption cycles. Appl Energy. 2000;66:251–66.

    Article  CAS  Google Scholar 

  2. Fan Y, Luo L, Souyri B. Review of solar sorption refrigeration technologies: development and applications. Renew Sustain Energy Rev. 2007;11:1758–75.

    Article  CAS  Google Scholar 

  3. Calm JM. Emissions and environmental impacts from air-conditioning and refrigeration systems. Int J Refrig. 2002;25:293–330.

    Article  CAS  Google Scholar 

  4. Rosen M, Dincer I. Exergy as the confluence of energy, environment and sustainable development. Exergy. 2001;1:1–11.

    Article  Google Scholar 

  5. Kotas TJ. The exergy method of thermal plant analysis. London: Butterworth; 1985.

    Google Scholar 

  6. Kumar V, Pandya B, Matawala V. Thermodynamic studies and parametric effects on exergetic performance of a steam power plant. Int J Ambient Energy. 2017. https://doi.org/10.1080/01430750.2017.1354326

    Article  Google Scholar 

  7. Panchal S, Dincer I, Agelin-Chaab M. Thermodynamic analysis of hydraulic braking energy recovery systems for a vehicle. J Energy Resour Technol. 2016;138:011601.

    Article  Google Scholar 

  8. Prabakaran R, Mohan Lal D. A novel exergy based charge optimisation for a mobile air conditioning system. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6998-0

    Article  Google Scholar 

  9. Raveendran PS, Sekhar SJ. Exergy analysis of a domestic refrigerator with brazed plate heat exchanger as condenser. J Therm Anal Calorim. 2017;2017(127):2439–46.

    Article  CAS  Google Scholar 

  10. Anand S, Gupta A, Tyagi SK. Comparative thermodynamic analysis of a hybrid refrigeration system for promotion of cleaner technologies. J Therm Anal Calorim. 2014;117:1453–68.

    Article  CAS  Google Scholar 

  11. Myat A, Thu K, Kim YD, Chakraborty A, Chun WG. A second law analysis and entropy generation minimization of an absorption chiller. Appl Therm Eng. 2011;31:2405–13.

    Article  CAS  Google Scholar 

  12. Adewusi SA, Zubair SM. Second law based thermodynamic analysis of ammonia water absorption systems. Energy Convers Manag. 2004;45:355–69.

    Article  CAS  Google Scholar 

  13. Kumar V, Pandya B, Patel J, Matawala V. Cut-off temperature evaluation and performance comparison from energetic and exergetic perspective for NH3–H2O absorption refrigeration system. Therm Sci Eng Prog. 2017;4:97–105.

    Article  Google Scholar 

  14. Panchal S, Dincer I, Agelin-Chaab M. Analysis and evaluation of a new renewable energy based integrated system for residential applications. Energy Build. 2016;128:900–10.

    Article  Google Scholar 

  15. Paria S, Baradaran S, Amiri A, Sarhan AAD, Kazi SN. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J Therm Anal Calorim. 2016;123:1371–81.

    Article  CAS  Google Scholar 

  16. Aman J, Ting SK, Henshaw P. Residential solar air conditioning: energy and exergy analyses of an ammonia-water absorption cooling system. Appl Therm Eng. 2014;62:424–32.

    Article  CAS  Google Scholar 

  17. Barhoumi M, Ezzine B, Bellagi A. Exergy analysis of an ammonia-water absorption system. Int J Exergy. 2009;6:698–714.

    Article  CAS  Google Scholar 

  18. Dixit M. Thermodynamic analysis of GAX and hybrid GAX aqua-ammonia vapours absorption refrigeration systems. Int J Hydrog Energy. 2015;40:256–65.

    Article  CAS  Google Scholar 

  19. Khaliq A, Kumar R. Exergetic analysis of solar powered absorption refrigeration system using LiBr–H2O and NH3–H2O as working fluids. Int J Exergy. 2007;4:1–18.

    Article  CAS  Google Scholar 

  20. May SE, Boukholda I, Belagi A. Energetic and exergetic analysis of a commercial ammonia-water absorption chiller. Int J Exergy. 2010;8:33–50.

    Article  Google Scholar 

  21. Gebreslassie BH, Medrano M, Boer D. Exergy analysis of multi-effect water–LiBr absorption systems: from half to triple effect. Renew Energy. 2010;35:1773–82.

    Article  CAS  Google Scholar 

  22. Onan C, Ozkan DB, Erdem S. Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications. Energy. 2010;35:5277–85.

    Article  CAS  Google Scholar 

  23. Mahesh A, Kaushik SC. Solar adsorption refrigeration system using different mass of adsorbents. J Therm Anal Calorim. 2013;111:897–903.

    Article  CAS  Google Scholar 

  24. Ghaddar NK, Shihab M, Bdeir F. Modeling and simulation of solar absorption system performance in Beirut. Renew Energy. 1997;10:539–58.

    Article  Google Scholar 

  25. Bouaziz N, Lounissi D. Energy and exergy investigation of a novel double effect hybrid absorption refrigeration system for solar cooling. Int J Hydrog Energy. 2015;40:13849–56.

    Article  CAS  Google Scholar 

  26. Ezzine NB, Barhoumi M, Mejbri K, Bellagi A. Irreversibilities in two configurations of the double generator absorption chiller. J Therm Anal Calorim. 2005;80:471–5.

    Article  CAS  Google Scholar 

  27. Gupta A, Anand Y, Anand S, Tyagi SK. Thermodynamic optimization and chemical exergy quantification for absorption-based refrigeration system. J Therm Anal Calorim. 2015;122:893–905.

    Article  CAS  Google Scholar 

  28. Pandya B, Kumar V, Patel J, Matawala VK. Optimum heat source temperature and performance comparison of LiCl–H2O and LiBr–H2O type solar cooling system. J Energy Resour Technol. 2018;140:051204.

    Article  Google Scholar 

  29. Duffie JA, Beckman WA. Solar engineering of thermal processes. London: Wiley; 2006.

    Google Scholar 

  30. Kalogirou SA. Solar energy engineering: processes and systems. Cambridge: Academic; 2013.

    Google Scholar 

  31. Jafarkazemi F, Ahmadifard E. Energetic and exergetic evaluation of flat plate solar collectors. Renew Energy. 2013;56:55–63.

    Article  Google Scholar 

  32. Petela R. Exergy analysis of solar radiation (Chapter 2). Solar thermal sciences and engineering applications. Boca Raton: CRC Press; 2013.

    Google Scholar 

  33. Patel J, Pandya B, Mudgal A. Exergy based analysis of LiCl–H2O absorption cooling system. Energy Proc. 2017;109:261–9.

    Article  CAS  Google Scholar 

  34. Borge D, Colmenar A, Castro M, Martín S, Sancristobal E. Exergy efficiency analysis in buildings climatized with LiCl–H2O solar cooling systems that use swimming pools as heat sinks. Energy Build. 2011;43:3161–72.

    Article  Google Scholar 

  35. Kalogirou SA. The potential of solar industrial process heat applications. Appl Energy. 2003;76:337–61.

    Article  CAS  Google Scholar 

  36. Mani A. Handbook of solar radiation data for India. New Delhi: Allied Publishers; 1080. p. 1980.

    Google Scholar 

  37. Gogoi TK, Konwar D. Exergy analysis of a H2O–LiCl absorption refrigeration system with operating temperatures estimated through inverse analysis. Energy Convers Manag. 2016;110:436–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, B., Kumar, V., Matawala, V. et al. Thermal comparison and multi-objective optimization of single-stage aqua-ammonia absorption cooling system powered by different solar collectors. J Therm Anal Calorim 133, 1635–1648 (2018). https://doi.org/10.1007/s10973-018-7193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7193-z

Keywords

Navigation