Skip to main content
Log in

Comparative thermodynamic analysis of a hybrid refrigeration system for promotion of cleaner technologies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents a comparative thermodynamic analysis based on numerical methods for a hybrid refrigeration system suitable to operate as vapour absorption system (VA), vapour compression–absorption system (VCA) and vapour compression system (VC). The working fluid employed for the first two systems is ammonia–water and it is pure ammonia in case of the third system. The system is being powered by waste energy and conventional energy depending on the mode of operation. The effect on performance parameters like COP and exergy efficiency during all modes of operation has been evaluated by keeping the uniform parametric conditions like condenser temperature (40 °C) and evaporator temperature (5 °C) for all the modes of operation. The effect of ambient temperature on the exergy loss in each component of the different modes of operation have also been evaluated and discussed. The results obtained indicate that COP and exergy efficiency for VCA mode initially increases and then decreases whereas for VA and VC mode the COP and exergy efficiency decreases with condenser temperature. The analysis also reveals that with the variation in evaporator temperature the COP and exergy efficiency for VC mode increases whilst for VA and VCA mode the COP shows a slight increase whereas exergy efficiency decreases. The variation of exergy efficiency and exergy loss in different components with condenser and evaporator temperature shows that exergy efficiency is found to be the highest in VC mode whereas the lowest in VCA mode for both the temperature variations. The variation of compressor work and exergy loss in compressors with evaporator and condenser temperature shows that compressor work and exergy loss is lesser for VCA mode when compared to VC mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( \dot{m} \) :

Mass flow rate (kg s−1)

h :

Enthalpy (kJ kg−1)

s :

Entropy (kJ kg−1 K−1)

\( \dot{Q} \) :

Heat flow (kJ s−1)

p :

Pressure (bar)

T :

Temperature (°C or K)

\( \dot{W} \) :

Power consumption (kJ s−1)

Ex:

Exergy (kJ s−1)

1–12:

Different state points in a system

PR-valve:

Pressure reducing valve

EES:

Engineering equation solver

COP:

Coefficient of performance

VA:

Vapour absorption refrigeration system

VCA:

Vapour compression–absorption refrigeration system

VC:

Vapour compression refrigeration system

Є:

Effectiveness of heat exchanger

η :

Efficiency/dimensionless

A:

Absorber

C:

Condenser

G:

Generator

E:

Evaporator

p:

Pump

c:

Compressor

i, in:

Inside

o, out:

Ambient, outside

Ex:

Exergy (kJ s−1)

η :

Efficiency

c, VA:

Compressor in vapour absorption refrigeration system

c, VCA:

Compressor in vapour compression–absorption refrigeration system

c, VC:

Compressor in vapour compression refrigeration system

References

  1. Sanjuan C, Soutullo S, Heras MR. Optimization of a solar cooling system with interior energy storage. Sol Energy. 2010;84:1244–54.

    Article  CAS  Google Scholar 

  2. Abdullah MO, Hien TC. Comparative analysis of performance and techno-economics for a H2O–NH3–H2 absorption refrigerator driven by different energy sources. Appl Energy. 2011;87:1535–45.

    Article  Google Scholar 

  3. Anand S, Gupta A, Tyagi SK. Renewable energy powered evacuated tube collector refrigerator system. Mitig Adapt Strateg Glob Chang. 2013. doi:10.1007/s11027-013-9461-3.

  4. Baik YJ, Park SR, Chang KC, Ra HS. Korean J Air Cond Refrig Eng. 2004;16:1117.

    Google Scholar 

  5. Shah RK, Sekulic DP. Fundamentals of heat exchangers design. New York: Wiley; 2003.

    Book  Google Scholar 

  6. Groll EA, Radermacher R. Vapor compression cycle with solution circuit and desorber/absorber heat exchanger. ASHRAE Trans. 1994;100:73.

    Google Scholar 

  7. Ahlby L, Hedgett D, Berntsson T. Optimization study of compression/absorption cycles. Int J Refrig. 1991;14:16.

    Article  Google Scholar 

  8. Li YW, Wang RZ, Wu JY, Xu YX. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater. Appl Therm Eng. 2007;27:2858–68.

    Article  Google Scholar 

  9. Berlitz T, Cerkvenik B, Hellmann HM, Ziegler F. A basis for the energetic assessment of the hybrid compression sorption systems. Proceedings of the international sorption heat pump conference (ISHPC), 1999.

  10. Kim B, Park J. Dynamic simulation of a single-effect ammonia water absorption chiller. Int J Refrig. 2007;30:535–45.

    Article  CAS  Google Scholar 

  11. Bulgan AT. Use of low temperature energy sources in aqua-ammonia absorption refrigeration systems. Energy Convers Manag. 1997;38:1431–8.

    Article  CAS  Google Scholar 

  12. Pilatowsky I, Rivera W, Romero RJ. Thermodynamic analysis of monomethylamine–water solution in a single stage solar absorption refrigeration cycle at low generator temperatures. Sol Energy Mater Sol Cells. 2001;70:287–300.

    Article  CAS  Google Scholar 

  13. Le Lostec B, Galanis N, Millette J. Experimental study of an ammonia–water absorption chiller. Int J Refrig. 2012;35:2275–86.

    Article  CAS  Google Scholar 

  14. Ravikumar TS, Suganthi L, Samuel AA. Exergy analysis of a solar assisted double effect absorption refrigeration system. Renew Energy. 1998;14:55–9.

    Article  Google Scholar 

  15. Adewusi SA, Zubair SM. Second law based thermodynamic analysis of ammonia–water vapor absorption refrigeration system. Energy Convers Manag. 2004;45:2355–69.

    Article  CAS  Google Scholar 

  16. Ezzine NB, Barhoumi M, Mejbri K, Chemkhi S, Bellagi A. Solar cooling with the absorption principle: first and second law analysis of an ammonia–water double-generator absorption chiller. Desalination. 2004;168:137–44.

    Article  CAS  Google Scholar 

  17. Kim DS, Infante Ferreira CA. Solar refrigeration options—a state-of-the-art review. Int J Refrig. 2008;31:3–15.

    Article  CAS  Google Scholar 

  18. Anand S, Gupta A, Tyagi SK. Simulation studies of refrigeration cycles: a review. Renew Sustain Energy Rev. 2013;17:260–77.

    Article  Google Scholar 

  19. Mazloumi M, Naghashzadegan M, Javaherdeh K. Simulation of solar lithium–bromide water absorption cooling system with parabolic trough collector. Energy Convers Manag. 2008;49:2820–32.

    Article  CAS  Google Scholar 

  20. El Fadar A, Mimet A, Perez Garcia M. Modeling and performance study of a continuous adsorption refrigeration system driven by parabolic trough collector. Sol Energy. 2009;83:850–61.

    Article  Google Scholar 

  21. Vargas JVC, Ordonez JC, Dilay E, Parise JAR. Modeling, simulation and optimization of a solar collector driven water heating and absorption-cooling plant. Sol Energy. 2009;83:1232–44.

    Article  CAS  Google Scholar 

  22. Ozgoren M, Bilgili M, Babayigit O. Hourly performance prediction of ammonia–water solar absorption refrigeration system. Appl Therm Eng. 2012;40:80–90.

    Article  CAS  Google Scholar 

  23. Dornates R, Estrada CA, Pilatowsky I. Mathematical simulation of a solar-ejector-compression refrigeration system. Appl Therm Eng. 1995;16:669–75.

    Article  Google Scholar 

  24. Arora A, Kaushik SC. Theoretical analysis of a vapor compression refrigeration system with R502, R404A and R507A. Int J Refrig. 2008;31:998–1005.

    Article  CAS  Google Scholar 

  25. Qureshi BA, Zubair SM. Performance degradation of a vapor compression refrigeration system under fouled conditions. Int J Refrig. 2011;34:1016–27.

    Article  CAS  Google Scholar 

  26. Anand S, Tyagi SK. Exergy analysis and experimental investigation of a vapor compression refrigeration cycle. J Therm Anal Calorim. 2012;110:961–71.

    Article  CAS  Google Scholar 

  27. Zhao L, Cai WJ, Ding X, Chang W. Decentralized optimization for vapor compression refrigeration cycle. Appl Therm Eng. 2013;51:753–63.

    Article  Google Scholar 

  28. Kairouani L, Nehdi E. Cooling performance and energy saving of a compression–absorption refrigeration system assisted by geothermal energy. Appl Therm Eng. 2006;26:288–94.

    Article  CAS  Google Scholar 

  29. Ayala R, Heard CL, Holland FA. Ammonia/lithium nitrate absorption/compression refrigeration cycle: part I: simulation. Appl Therm Eng. 1997;17:223–33.

    Article  CAS  Google Scholar 

  30. Ayala R, Heard CL, Holland FA. Ammonia/lithium nitrate absorption/compression refrigeration cycle: part II: experimental. Appl Therm Eng. 1998;18:661–70.

    Article  CAS  Google Scholar 

  31. Santayo-Gutierrez S, Siqueiros J, Heard CL, Santoyo E, Holland FA. An experimental integrated absorption heat pump effluent purification system: part I: operating on water/lithium bromide solutions. Appl Therm Eng. 1999;19:461–75.

    Article  Google Scholar 

  32. Goktun S. Optimal performance of an irreversible heat engine driven combined vapor compression and absorption refrigerator. Appl Energy. 1999;62:67–79.

    Article  CAS  Google Scholar 

  33. Syed MT, Siddiqui MA. Performance and economic study of the combined absorption/compression heat pump. Energy Convers Manag. 1999;40:575–91.

    Article  Google Scholar 

  34. Chinnappa JCV, Crees MR, Srinivasa Murthy G, Srinivasan K. Solar-assisted vapor compression/absorption cascaded air-conditioning systems. Sol Energy. 1993;50:453–8.

    Article  CAS  Google Scholar 

  35. Kececiler A, Acar HI, Dogan A. Thermodynamic analysis of the absorption refrigeration system with geothermal energy: an experimental study. Energy Convers Manag. 2000;41:37–48.

    Article  CAS  Google Scholar 

  36. Fernandez-Seara J, Sieresd J, Vazquez M. Compression absorption cascade refrigeration system. Appl Therm Eng. 2006;26:502–12.

    Article  CAS  Google Scholar 

  37. Satapathy PK, Gopal MR, Arora RC. A comparative study of R22-E181 and R134a-E181 working pairs for a compression–absorption system for simultaneous heating and cooling applications. J Food Eng. 2007;80:939–46.

    Article  Google Scholar 

  38. Pratihar AK, Kaushik SC, Agarwal RS. Simulation of an ammonia–water compression–absorption refrigeration system for water chilling application. Int J Refrig. 2010;33:1386–94.

    Article  CAS  Google Scholar 

  39. Garimella Srinivas, Brown AM, Nagavarapu AK. Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling. Int J Refrig. 2011;34:1776–85.

    Article  CAS  Google Scholar 

  40. Dopazo JA, Fernandez-Seara J. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications. Int J Refrig. 2011;34:257–67.

    Article  CAS  Google Scholar 

  41. Kim J, Park S-R, Baik Y-J, Chang K-C, Ra H-S, Kim M, Kim Y. Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat. Renew Energy. 2013;54:13.

    Article  CAS  Google Scholar 

  42. ASHRAE. Fundamentals handbook. SI ed. Atlanta: American Society of Heating, Refrigeration and Air-conditioning Engineers; 1997.

    Google Scholar 

  43. Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization. New York: Wiley; 1995.

    Google Scholar 

  44. Klein SA, Alvarado F. Engineering equation solver, Version 9.083, F-Chart Software, Middleton, WI; 2012.

Download references

Acknowledgements

The financial assistance under Project No. 22/541/10-EMR-II from the Council for Scientific and Industrial Research (CSIR), New Delhi, India for this study is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Gupta, A. & Tyagi, S.K. Comparative thermodynamic analysis of a hybrid refrigeration system for promotion of cleaner technologies. J Therm Anal Calorim 117, 1453–1468 (2014). https://doi.org/10.1007/s10973-014-3889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3889-x

Keywords

Navigation