Skip to main content
Log in

Thermal and electrical properties of CaCu3Ti4O12 synthesized by soft chemistry route

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Calcium copper titanate powders were synthesized by a soft chemistry route, aiming to establish a cost-effective solution method to obtain sintered ceramics with giant electric permittivity (ε′) and low dissipation factor (tanδ). Powders and sintered pellets were characterized by several techniques. The thermal decomposition behavior of the porous foam evidences that a hydroxycitrate was formed below 200 °C. Single cubic perovskite-type phase was obtained after calcination of the precursor powder at 700 °C for 5 h. Negligible mass loss occurs above 400 °C. During heating the precursor material, CuO is the first crystallized phase. A giant ε′ and low tanδ are obtained after sintering. The extension of the thermal window of ε′ is wider than those of powders prepared by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Subramanian MA, Li D, Duan N, Reisner BA, Sleight WA. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem. 2000;151:323–5.

    Article  CAS  Google Scholar 

  2. Ramirez AP, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM. Giant dielectric constant response in a copper–titanate. Mater Lett. 2000;115:217–20.

    CAS  Google Scholar 

  3. Brizé V, Gruener G, Wolfman J, Fatyeyeva K, Tabellout M, Gervais M, Gervais F. Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. Mater Sci Eng. 2006;B129:135–8.

    Article  Google Scholar 

  4. Shao SF, Zhang JL, Zheng P, Wang CL. Effect of Cu-stoichiometry on the dielectric and electric properties in CaCu3Ti4O12 ceramics. Solid State Commun. 2007;142:281–6.

    Article  CAS  Google Scholar 

  5. Fang T-T, Mei L-T, Ho H-F. Effect of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses and stability of CaCu3Ti4O12. Acta Mater. 2006;54:2867–75.

    Article  CAS  Google Scholar 

  6. Liu J, Smith RW, Mei W-N. Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry methods. Chem Mater. 2007;19:6020–4.

    Article  CAS  Google Scholar 

  7. Marchin L, Guillemet-Fritsch S, Durand B, Levchenko AA, Navrotsky A. Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics. J Am Ceram Soc. 2008;91:485–9.

    Article  CAS  Google Scholar 

  8. Zhao Y, Gao R, Su G, Lin H, Wang C, Cheng C. Effect of dispersant on CaCu3Ti4O12 powders synthesized by oxalate co-precipitation method. Mater Lett. 2013;91:187–90.

    Article  CAS  Google Scholar 

  9. Porfirio TC, Muccillo ENS. Influence of lithium disilicate addition on the dielectric properties of chemically synthesized CaCu3Ti4O12. J Mater Sci Mater Electron. 2015;26:3970–5.

    Article  CAS  Google Scholar 

  10. Wan W, Yang J, Qiu T, Yuan W-X, Liu C, Zhao X. Preparation of giant dielectric CaCu3Ti4O12 ceramics via molten salt method from NaCl flux. Int J Appl Ceram Technol. 2016;13:382–8.

    Article  CAS  Google Scholar 

  11. Liu L, Fan H, Fang P, Chen X. Sol-gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater Res Bull. 2008;43:1800–7.

    Article  CAS  Google Scholar 

  12. Thomas P, Dwarakanauth K, Varma KBR, Kutty TRN. Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim. 2009;95:267–72.

    Article  CAS  Google Scholar 

  13. Masingboon C, Thongbai P, Maensiri S, Yamwong T. Nanocrystalline CaCu3Ti4O12 powder by PVA sol-gel route: synthesis, characterization and its giant dielectric constant. Appl Phys. 2009;A96:595–602.

    Article  Google Scholar 

  14. Jesurani S, Kanagesan S, Velmurugan R, Thirupathi C, Sivakumar M, Kalaivani T. Nanoparticles of the giant dielectric material, calcium copper titanate from a sol-gel technique. Mater Lett. 2011;65:3305–8.

    Article  CAS  Google Scholar 

  15. He Y, Liu T, Xu Y, Zhao J, Du Z. Synthesis of the giant dielectric constant oxide CaCu3Ti4O12 via ethylenediaminetetraacetic acid precursor. Mater Res Bull. 2012;47:1181–4.

    Article  CAS  Google Scholar 

  16. Porfirio TC, Muccillo ENS. Dielectric properties of CaCu3Ti4O12 synthesized by different routes. Adv Mater Res. 2014;975:184–8.

    Article  Google Scholar 

  17. Yang Y, Wang X, Liu B. CaCu3Ti4O12 ceramics from different methods: microstructure and dielectric. J Mater Sci Mater Electron. 2014;25:146–51.

    Article  CAS  Google Scholar 

  18. Zhang W, Li L, Li P, Chen W. A Novel method to synthesize CaCu3Ti4O12 with acetylacetonate precursor. Mater Lett. 2016;181:71–3.

    Article  CAS  Google Scholar 

  19. Muccillo ENS, Rocha RA, Muccillo R. Preparation of Gd2O3-doped ZrO2 by polymeric precursor techniques. Mater Lett. 2002;53:353–8.

    Article  CAS  Google Scholar 

  20. Courty PH, Ajot H, Marcilly C. Oxydes mixtes ou en solution solides sous forme trés divisée obtenus par décomposition thermique de précurseurs amorphes. Powder Technol. 1973;7:21–38.

    Article  CAS  Google Scholar 

  21. Rocha RA, Muccillo ENS. Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique. Mater Res Bull. 2003;38:1979–86.

    Article  CAS  Google Scholar 

  22. Fang T-T, Liu CP. Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem Mater. 2005;17:5167–71.

    Article  CAS  Google Scholar 

  23. Romero JJ, Leret P, Rubio-Marcos F, Quesada A, Fernández JF. Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics. J Eur Ceram Soc. 2010;30:737–42.

    Article  CAS  Google Scholar 

  24. Sangwong N, Yamwong T, Thongbai P. Synthesis, characterization and giant dielectric propertied of CaCu3Ti4O12 ceramics prepared by a polyvinyl pyrrolidone-dimethylformamide solution route. J Electroceram. 2013;31:181–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial supports of FAPESP (2013/07296-2), CNPq (304073/2014-8) and CNEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Porfirio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porfirio, T.C., Muccillo, E.N.S. Thermal and electrical properties of CaCu3Ti4O12 synthesized by soft chemistry route. J Therm Anal Calorim 133, 851–857 (2018). https://doi.org/10.1007/s10973-018-7184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7184-0

Keywords

Navigation