Skip to main content
Log in

Characterization of the complexing agents’ influence on bioscouring cotton fabrics by FT-IR and TG/DTG/DTA analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The nature of the complexing agents used in the bioscouring process of cotton fabrics aiming to eliminate the non-cellulosic compounds (pectin, waxes, etc.) and to improve the hydrophilic and wetting properties influences the thermal behaviour and the FT-IR spectra of the textile materials. In this paper, we study the influence of the experimental conditions and complexing agent nature (sodium citrate or disodium EDTA salt) on the pectin elimination in bioscouring treatment of cotton fabric by FT-IR and TG/DTG/DTA analysis. The changes from FT-IR spectra of the specific bands (absorbance intensity at 2916, 2852, 1732 and 1640/1642 cm−1) were evaluated. The thermal behaviour of the investigated samples’ fabric by using TG/DTG/DTA analysis was studied at 30–600 °C temperature range, in air atmosphere. All samples showed three mass-loss steps due to the elimination of humidity, decomposition of the non-cellulosic and cellulosic components (main degradation stage of the samples) and thermo-oxidative decomposition of the formed degradation products. The Tonset values corresponding to the main decomposition step, the mass-loss values (%Δm) and the % residual mass (at 600 °C) were influenced by the complexing agent nature as well as the concentration and the action time of the commercial enzyme product. In addition, the calcium content of some samples treated with and without ultrasound was determined using atomic absorption spectroscopy method (AAS) in order to correlate the results with TG/DTG/DTA analysis. The obtained results have shown that the synergistic action of experimental conditions (enzyme concentration, pH, enzyme product action time, ultrasound) and the presence of sodium citrate as a biodegradable complexing agent led to the elimination of a higher amount of pectin from the cotton samples than that eliminated when using EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA, Goynes WR, Edwards JV Jr, Hunter L, McAlister DD, Gamble GR. Cotton fibers. In: Menachem L, editor. Handbook of fiber chemistry. 3rd ed. New York: Taylor and Francis Group; 2007. p. 523.

    Google Scholar 

  2. Li Y, Hardin IR. Treating cotton with cellulases and pectinases: effects on cuticle and fiber properties. Text Res J. 1998;68:671–9.

    Article  CAS  Google Scholar 

  3. Lin C, Hsieh YL. Direct scouring of greige cotton fabrics with proteases. Text Res J. 2001;71:425–34.

    Article  CAS  Google Scholar 

  4. Wang Q, Fan X, Gao W, Chen J. Characterization of bioscoured cotton fabrics using FTIR ATR spectroscopy and microscopy techniques. Carbohydr Res. 2006;341:2170–5.

    Article  CAS  PubMed  Google Scholar 

  5. Gamble GR. Variation in surface chemical constituents of cotton (Gossypium hirsutum) fibre as a function of maturity. J Agric Food Chem. 2003;51:7995–8.

    Article  CAS  PubMed  Google Scholar 

  6. Clarke AJ. Biodegradation of cellulose: enzymology and biotechnology. Lancaster: Printing House, Technomic Publ; 1997.

  7. Wang Q, Fan X, Hua Z, Gao W, Chen J. Influence of combined enzymatic treatment on one-bath scouring of cotton knitted fabrics. Biocatal Biotransform. 2007;25:8–15.

    Article  CAS  Google Scholar 

  8. Dochia M, Stanescu MD, Constantin C. Calcium content indicator of scouring efficiency. Fibers Text East Europe. 2013;21(3 (99)):22–5.

    CAS  Google Scholar 

  9. Vigneswaran C, Ananthasubramanian M, Anubumani N. Effect of sonification on bioscouring of organic cotton through mixed enzymatic system—neutral network approach. Indian J Fibers Text Res. 2013;38:44–56.

    CAS  Google Scholar 

  10. Abdel-Halim ES, Fahmy HM, Fouda Moustafa MG. Bioscouring of linen fabric in comparison with conventional chemical treatment. Carbohydr Polym. 2008;74:707–11.

    Article  CAS  Google Scholar 

  11. Ridley BL, O’Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. Phytochemistry. 2001;57(6):929–67.

    Article  CAS  PubMed  Google Scholar 

  12. Bertoniere NR, Zeronian SH. Chemical characterization of cellulose. In: Atalla RH, editor. The structures of cellulose. ACS Symposium Series, No. 340. Washington: American Chemical Society; 1987. p. 255.

    Google Scholar 

  13. Heldt HW, Piechulla B. Plant biochemistry. 4th ed. London: Academic Press; 2011.

    Google Scholar 

  14. Dey PM, Harborne JB. Plant biochemistry. San Diego: Academic Press; 1997.

    Google Scholar 

  15. Stanescu MD, Fogorasi M, Mihuta S, Dochia M, Lozinsky VI. Biotechnology for textile waste valorization. Rev. Chim. (Bucharest). 2009;60:59–62.

    CAS  Google Scholar 

  16. Calafell M, Garriga P. Effect of some process parameters in the enzymatic scouring of cotton using an acid pectinase. Enzym Microb Technol. 2004;34:326–31.

    Article  CAS  Google Scholar 

  17. Araujo R, Casal M, Cavaco-Paolo A. Application of enzymes for textile fibers processing. Biocatal Biotransform. 2008;26(5):332–49.

    Article  CAS  Google Scholar 

  18. Chung C, Lee M, Choe EK. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym. 2004;58(4):417–20.

    Article  CAS  Google Scholar 

  19. Stanescu MD, Dochia M, Radu D, Sirghie C. Green solution for cotton scouring. Fibers Text East Europe. 2010;18((3 (80))):109–11.

    CAS  Google Scholar 

  20. Kalantzi S, Mamma D, Christakopoulos P, Kekos D. Effect of pectate lyase bioscouring on physical, chemical and low-stress mechanical properties of cotton fabrics. Bioresour Technol. 2008;99:8185–92.

    Article  CAS  PubMed  Google Scholar 

  21. Csiszár E, Losonczi A, Szakács G, Rusznák I, Bezúr L, Reicher J. Enzymes and chelating agent in cotton pretreatment. J Biotechnol. 2001;89(2–3):271–9.

    Article  PubMed  Google Scholar 

  22. Csiszár E, Losonczi A, Szakács G, Bezúr L, Kustos K. Influence of EDTA complexing agent on biopreparation of linen fabric. Biocatal Biotransform. 2004;22(5–6):369–74.

    Article  CAS  Google Scholar 

  23. Losonczi A, Csiszár E, Szakács G, Bezúr L. Role of the EDTA chelating agent in bioscouring of cotton. Text Res J. 2005;75(5):411–7.

    Article  CAS  Google Scholar 

  24. Lenting HBM, Zweir E, Nierstrasz VA. Identifying important parameters for a continuous bioscouring process. Text Res J. 2002;72(9):825–31.

    Article  CAS  Google Scholar 

  25. Stanescu MD, Fogorasi M, Bucur MS, Pustianu M, Dochia M. Enzymes in cotton bio-scouring. UPB Sci Bull Series B. 2010;72(3):21–8.

    CAS  Google Scholar 

  26. Keowmaneechai E, McClements DJ. Influence of EDTA and citrate on physicochemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2. J Agric Food Chem. 2002;50(24):7145–53.

    Article  CAS  PubMed  Google Scholar 

  27. Timar-Balaszy A, Eastop D. Chemical principles of textiles conservation. 1st ed. London: Taylor and Francis Group; 2012. p. 221.

    Book  Google Scholar 

  28. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485–91.

    Article  CAS  Google Scholar 

  29. Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric. J Therm Anal Calorim. 2009;97(2):415–9.

    Article  CAS  Google Scholar 

  30. d’Almeida ALFS, Barreto DW, Calado V, d’Almeida JRM. Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim. 2008;91(2):405–8.

    Article  CAS  Google Scholar 

  31. Saafan AA, Habib AM. Influence of changes in fine structure on thermal properties of cotton fibers. J Therm Anal Calorim. 1987;32:1511–9.

    Article  CAS  Google Scholar 

  32. Tian CM, Shi ZH, Zhang HY, Xu JZ, Shi JR, Guo HZ. Thermal degradation of cotton cellulose. J Therm Anal Calorim. 1999;55:93–8.

    Article  CAS  Google Scholar 

  33. Zhang L, He J, Wanh SY. Structure and thermal properties of colored cottons and bombax cotton. J Thermal Anal Calorim. 2009;2:653–9.

    Article  Google Scholar 

  34. Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S. Effect of chemical treatments on water sorption and mechanical properties of flax fibers. Bioresour Technol. 2009;100:4724–9.

    Article  CAS  Google Scholar 

  35. Perincek S, Duran K. Optimization of enzymatic and ultrasonic bio-scouring of linen fabrics by aid of Box-Behnken experimental design. J Clean Prod. 2016;135:1179–88.

    Article  CAS  Google Scholar 

  36. Bílková L. Application of infrared spectroscopy and thermal analysis to the examination of the degradation of cotton fibers. Polym Degrad Stab. 2012;97:35–9.

    Article  CAS  Google Scholar 

  37. Kovačević Z, Bischof Vukušić S, Zimniewska M. Comparison of Spanish broom (Spartium junceum L.) and flax (Linum usitatissimum) fibre. Text Res J. 2012;82(17):1786–98.

    Article  CAS  Google Scholar 

  38. Subramanian K, Senthil Kumar P, Jeyapal P, et al. Characterization of ligno-cellulosic seed fiber from Wrightia Tinctoria plant for textile applications—an exploratory investigation. Eur Polym J. 2005;41:853–61.

    Article  CAS  Google Scholar 

  39. Čopiková J, Synytsya A, Černá M, Kaasová J, Novotá M. Application of FT-IR spectroscopy in detection of food hydrocolloids in confectionery jellies and food supplements. Czech J Food Sci. 2001;19(2):51–6.

    Article  Google Scholar 

  40. Song KH, Obendorf SK. Chemical and biological retting of kenaf fibers. Text Res J. 2006;76:751–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS—UEFISCDI, Project Number PN-II-RU-TE-2014-4-1370 and “Centru de Cercetare în Stiinte Tehnice si Naturale—CESTN” co-funded by European Union through European Regional Development Fund Structural Operational Program “Increasing of Economic Competitiveness” Priority axis 2. Operation 2.2.1. POSCCE Nr. 621/2014 POS-CCE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorina Chambre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dochia, M., Chambre, D., Gavrilaş, S. et al. Characterization of the complexing agents’ influence on bioscouring cotton fabrics by FT-IR and TG/DTG/DTA analysis. J Therm Anal Calorim 132, 1489–1498 (2018). https://doi.org/10.1007/s10973-018-7089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7089-y

Keywords

Navigation