Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1201–1211 | Cite as

Volatility and chemical stability of chromium, molybdenum, and tungsten hexacarbonyls

  • Manuel J. S. Monte
  • Ana R. R. P. Almeida
  • Rafael Notario


The sublimation vapor pressures of three metallic (group 6) hexacarbonyls, Cr(CO)6, Mo(CO)6, and W(CO)6, were measured using the Knudsen mass-loss effusion method. The standard (po = 0.1 MPa) molar enthalpies, entropies, Gibbs energies, and heat capacity difference between the gas and solid state, at T = 298.15 K, were derived from the experimental results combined with selected literature ones covering a wide range of temperature. The temperatures and molar enthalpies of fusion of those compounds were measured using differential scanning calorimetry. The thermodynamic stability of the hexacarbonyls was evaluated taking into account the standard Gibbs energies of formation in the crystalline and gaseous phases. Gas-phase absolute entropies, heat capacities, and enthalpies of formation of the three compounds studied as well as the bond distances M–C and C–O were calculated.


Metallic hexacarbonyls Sublimation vapor pressures Fusion Gibbs energy Enthalpy Entropy 



This work is dedicated to the memory of the late Prof. Manuel A. V. Ribeiro da Silva. Thanks are due to FCT, Project UID/QUI/00081/2013 and to FEDER (COMPETE 2020), Projects POCI-01-0145-FEDER-006980 and NORTE-01-0145-FEDER-000028. A.R.R.P.A. thanks FCT and the European Social Fund for the award of the postdoctoral fellowship (SFRH/BPD/97046/2013).

Supplementary material

10973_2018_7033_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 100 kb)


  1. 1.
    Iranpoor N, Firouzabadi H, Etemadi-Davan E, Nematollahi A, Firouzi HR. Novel nickel-catalyzed synthesis of thioesters, esters and amides from aryl iodides in the presence of chromium hexacarbonyl. New J Chem. 2015;39:6445–52.CrossRefGoogle Scholar
  2. 2.
    Lagerlund O, Larhed M. Microwavepromoted aminocarbonylations of aryl chlorides using Mo(CO)6 as a solid carbonmonoxide source. J Comb Chem. 2006;8:4–6.CrossRefGoogle Scholar
  3. 3.
    Wu X, Nilsson P, Larhed M. Microwave-enhanced carbonylative generation of indanones and 3-acylaminoindanones. J Org Chem. 2005;70:346–9.CrossRefGoogle Scholar
  4. 4.
    Åkerbladh L, Nordeman P, Wejdemar M, Odell LR, Larhed M. Synthesis of 4-quinolones via a carbonylative sonogashira cross-coupling using molybdenum hexacarbonyl as a CO source. J Org Chem. 2015;80:1464–71.CrossRefGoogle Scholar
  5. 5.
    Rosenberg SG, Barclay M, Fairbrother DH. Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Phys Chem Chem Phys. 2013;15:4002–15.CrossRefGoogle Scholar
  6. 6.
    Jafar M, Phapale S, Achary SN, Mishra R, Tyagi AK. High-temperature crystallographic and thermodynamic investigations on synthetic zirconolite (CaZrTi2O7). J Therm Anal Calorim. 2017. Scholar
  7. 7.
    Jain A, Kandan R. Determination of the thermodynamic stability of europium boride (EuB6). J Therm Anal Calorim. 2017. Scholar
  8. 8.
    Jain A, Pankajavalli R, Babu R, Anthonysamy S. Thermodynamic studies on the systems M–Te–O (M = Nd, Sm). J Therm Anal Calorim. 2014;115:1279–87.CrossRefGoogle Scholar
  9. 9.
    Jain A, Pankajavalli R, Anthonysamy S. Standard Gibbs energies of formation of M2TeO6(s) (M = Eu, Dy, Yb). J Therm Anal Calorim. 2015;119:689–93.CrossRefGoogle Scholar
  10. 10.
    Almeida ARRP, Monte MJS, Matos MAR, Morais VMF. Experimental and computational thermodynamic study of ortho- meta- and para-aminobenzamide. J Chem Thermodyn. 2013;59:222–32.CrossRefGoogle Scholar
  11. 11.
    Oliveira JASA, Calvinho MM, Notario R, Monte MJS, Ribeiro da Silva MDMC. A combined experimental and computational thermodynamic study of fluorene-9-methanol and fluorene-9-carboxylic acid. J Chem Thermodyn. 2013;62:222–30.CrossRefGoogle Scholar
  12. 12.
    Almeida ARRP, Monte MJS, Matos MAR, Morais VMF. The thermodynamic stability of the three isomers of methoxybenzamide: an experimental and computational study. J Chem Thermodyn. 2014;73:12–22.CrossRefGoogle Scholar
  13. 13.
    Oliveira JASA, Monte MJS, Notario R, Ribeiro da Silva MDMC. Experimental and computational study of the thermodynamic properties of 2-nitrofluorene and 2-aminofluorene. J Chem Thermodyn. 2014;76:56–63.CrossRefGoogle Scholar
  14. 14.
    Oliveira JASA, Santos AFLOM, Ribeiro da Silva MDMC, Monte MJS. Thermodynamic properties of bromine fluorene derivatives: an experimental and computational study. J Chem Thermodyn. 2015;89:134–41.CrossRefGoogle Scholar
  15. 15.
    Santos AFLOM, Oliveira JASA, Monte MJS. Experimental and computational thermodynamics of pyrene and 1-pyrenecarboxaldehyde and their photophysical properties. J Chem Thermodyn. 2015;90:282–93.CrossRefGoogle Scholar
  16. 16.
    Santos AFLOM, Oliveira JASA, Ribeiro da Silva MDMC, Monte MJS. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes. Chemosphere. 2016;146:173–81.CrossRefGoogle Scholar
  17. 17.
    Oliveira JASA, Freitas VLS, Notario R, Ribeiro da Silva MDMC. Monte MJS. Thermodynamic properties of 2,7-di-tert-butylfluorene—an experimental and computational study. J Chem Thermodyn. 2016;101:115–22.CrossRefGoogle Scholar
  18. 18.
    Oliveira JASA, Notario R, Ribeiro da Silva MDMC, Monte MJS. Vapour pressures, enthalpies and Gibbs energies of formation and sublimation of fluorene-2-carboxaldehyde. J Chem Thermodyn. 2017;111:65–71.CrossRefGoogle Scholar
  19. 19.
    CRC Handbook of Chemistry and Physics, 95th ed., In: W. M. Haynes, editor, 2014–2015.Google Scholar
  20. 20.
    Almeida ARRP, Monte MJS. Estimations of the thermodynamic properties of halogenated benzenes as they relate to their environment mobility. Chemosphere. 2017;189:590–8.CrossRefGoogle Scholar
  21. 21.
    Hieber VW, Romberg E. Thermochemische Untersuchungen an den Metall hexacarbonylen. Z Anorg Allg Chem. 1935;221:332–6.CrossRefGoogle Scholar
  22. 22.
    Rezukhina TN, Shvyrev VV. Дaвлeниe нacыщeннoгo пapa и тeплoты иcпapeния кapбoнилoв xpoмa, вoльфpaмa и мoлибдeнa. Vestn Moskov Univ. 1952;7:41–6.Google Scholar
  23. 23.
    Boxhoorn G, Ernsting JM, Stufkens DJ, Oskam A. Vapour pressure measurements on M(CO)5L complexes (M = Cr, W; L = CO, P(OO)3, PO3, PMe3, NMe3 and pyridazine). Thermochim Acta. 1980;42:315–21.CrossRefGoogle Scholar
  24. 24.
    Garner ML, Chandra D, Lau KW. Low-temperature vapor pressures of W-, Cr-, and co-carbonyls. J Phase Equilib. 1995;16:24–9.CrossRefGoogle Scholar
  25. 25.
    Boni AA. The vapor pressures of titanium tetrabromide and chromium carbonyl. J Electrochem Soc. 1966;113:1089–90.CrossRefGoogle Scholar
  26. 26.
    Windsor M, Blanchard A. The vapor pressure and molecular weight of chromium carbonyl. J Am Chem Soc. 1934;56:823–5.CrossRefGoogle Scholar
  27. 27.
    Pankajavalli R, Mallika C, Sreedharan OM, Raghunathan VS, Premkumar PA, Nagaraja KS. Thermal stability of organo-chromium or chromium organic complexes and vapor pressure measurements on tris(2,4-pentanedionato)chromium(III) and hexacarbonyl chromium(0) by TG-based transpiration method. Chem Eng Sci. 2002;57:3603–10.CrossRefGoogle Scholar
  28. 28.
    Baev AK. Tepмoдинaмичecкиe cвoйcтвa cмeceй гeкcaкapбoнилoв xpoмa и вoльфpaмa. Russ J Phys Chem. 1993;67:2399–402.Google Scholar
  29. 29.
    Ohta T, Cicoira F, Doppelt P, Beitone L, Hoffmann P. Static vapor pressure measurement of low volatility precursors for molecular vapor deposition below ambient temperature. Chem Vap Deposition. 2001;7:33–7.CrossRefGoogle Scholar
  30. 30.
    Monchamp RR, Cotton FA. Comparison of calorimetric and spectroscopic entropies of molybdenum hexacarbonyl. J Chem Soc. 1960.
  31. 31.
    Lander JJ, Germer LH. Trans Am Inst Min, Metall, Pet Eng. 1947;October:648. Cited in Ref. [28].Google Scholar
  32. 32.
    Sabbah R, El Watik L. New reference materials for the calibration (temperature and energy) of differential thermal analysers and scanning calorimeters. J Thermal Anal. 1992;38:855–63.CrossRefGoogle Scholar
  33. 33.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.CrossRefGoogle Scholar
  34. 34.
    Della Gatta G, Richarson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry part 2. Calibration standards for differential scanning calorimetry. Pure Appl Chem. 2006;78:145–1476.CrossRefGoogle Scholar
  35. 35.
    Roux MV, Temprado M, Chickos JS, Nagano Y. Critically evaluated thermos chemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data. 2008;37:1855–996.CrossRefGoogle Scholar
  36. 36.
    Chang SS, Bestul AB. Heat capacity and thermodynamic properties of o-terphenyl crystal, glass, and liquid. J Chem Phys. 1972;56:503–16.CrossRefGoogle Scholar
  37. 37.
    Ribeiro da Silva MAV, Monte MJS. The construction, testing and use of a new Knudsen effusion apparatus. Thermochim Acta. 1990;171:169–83.CrossRefGoogle Scholar
  38. 38.
    Ribeiro da Silva MAV, Monte MJS, Huinink J. Vapour pressures and standard molar enthalpies of sublimation of seven crystalline copper (II) β-diketonates. The mean molar (Cu–O) bond dissociation enthalpies. J Chem Thermodyn. 1995;27:175–90.CrossRefGoogle Scholar
  39. 39.
    Ribeiro da Silva MAV, Monte MJS, Santos LMNBF. The design, construction and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38:778–87.CrossRefGoogle Scholar
  40. 40.
    Almeida ARRP, Monte MJS. Vapor pressures and Gibbs energies of formation of the three hydroxybenzaldehydes. J Chem Eng Data. 2017;62:2982–92.CrossRefGoogle Scholar
  41. 41.
    Mohr PJ, Taylor BN, Newell DB. The 2014 CODATA Recommended values of the fundamental physical constants (Web Version 7.0), 2015.Google Scholar
  42. 42.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA. Ab initio molecular orbital theory. New York: Wiley; 1986.Google Scholar
  43. 43.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H,. Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Wallingford: Gaussian, Inc.; 2013.Google Scholar
  44. 44.
    Peverati R, Truhlar DG. M11-L: a local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J Phys Chem Lett. 2012;3:117–24.CrossRefGoogle Scholar
  45. 45.
    Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–41.CrossRefGoogle Scholar
  46. 46.
    Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys. 2006;124:034108.CrossRefGoogle Scholar
  47. 47.
    Schwabe T, Grimme S. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys. 2006;8:4398–401.CrossRefGoogle Scholar
  48. 48.
    Laury ML, Wilson AK. Performance of density functional theory for second row (4d) transition metal thermochemistry. J Chem Theor Comput. 2013;9:3939–46.CrossRefGoogle Scholar
  49. 49.
    Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297–305.CrossRefGoogle Scholar
  50. 50.
    Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys. 2006;8:1057–65.CrossRefGoogle Scholar
  51. 51.
    Vijayakumar M, Gopinathan MS. Spin-orbit coupling constants of transition metal atoms and ions in density functional theory. J Mol Struct (Theochem). 1996;361:15–9.CrossRefGoogle Scholar
  52. 52.
    Bernardes CES, Canongia Lopes JN, Minas da Piedade ME. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)n (M = Cr, Fe, Ni, Mo, Ru, or W) compounds. J Phys Chem A. 2013;117:11107–13.CrossRefGoogle Scholar
  53. 53.
    Fabbrizzi L, Mascherini R, Paoletti P. Melting of group VI transition metal hexacarbonyls: thermodynamic parameters. J Chem Soc Faraday Trans. 1976;1:896–900.CrossRefGoogle Scholar
  54. 54.
    Clarke ECW, Glew DN. Evaluation of thermodynamic functions from equilibrium constants. Trans Faraday Soc. 1966;62:539–47.CrossRefGoogle Scholar
  55. 55.
    Monte MJS, Almeida ARRP, Matos MAR. Thermodynamic study on the sublimation of five aminomethoxybenzoic acids. J Chem Eng Data. 2010;55:419–23.CrossRefGoogle Scholar
  56. 56.
    Acree W Jr, Chickos JS. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1–C10. J Phys Chem Ref Data. 2016;45:1–565.CrossRefGoogle Scholar
  57. 57.
    Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. Struct Chem. 1993;4:271–8.CrossRefGoogle Scholar
  58. 58.
    Al-Takhin G, Connor JA, Skinner HA, Zafarani-Moattan MT. Thermochemistry of arenetricarbonylchromium complexes containing toluene, anisole, N, N-dimethylaninine, acetophenone and methylbenzoate. J Organomet Chem. 1984;260:189–97.CrossRefGoogle Scholar
  59. 59.
    Pilcher G, Skinner HA. The chemistry of the metal-carbon bond. In: Hartley FR, Patai S, editors. New York: Wiley, 1982, Chap. 2.Google Scholar
  60. 60.
    Adedeji FA, Brown DLS, Connor JA, Leung ML, Paz-Andrade IM, Skinner HA. Thermochemistry of arene chromium tricarbonyls and the strengths of arene-chromium bonds. J Organomet Chem. 1975;97:221–8.CrossRefGoogle Scholar
  61. 61.
    Pilcher G, Ware MJ, Pittam DA. The thermodynamic properties of chromium, molybdenum and tungsten hexacarbonyls in the gaseous state. J Less Common Met. 1975;42:223–8.CrossRefGoogle Scholar
  62. 62.
    Pilcher G. Energetics of organometallic species: proceedings of the NATO advanced study institute on energetics of organometallic species. Series C: Mathematical and Physical Sciences. In: Martinho Simões JA, editor Chap. 2, vol 367, Dordrecht, Netherlands: Kluwer Academic Publishers; 1991. pp. 9–34 and references therein.Google Scholar
  63. 63.
    Chase MW Jr. NIST − JANAF thermochemical tables, 4th edition. J Phys Chem Ref Data Monograph. 1998;9:1–1951.Google Scholar
  64. 64.
    Martinho Simões JA, Minas das Piedade ME. Molecular energetics (condensed-phase thermochemical techniques), vol. 5. Oxford: Oxford University Press; 2008. p. 58–80.Google Scholar
  65. 65.
    Jost A, Rees B, Yelon WB. Electronic structure of chromium hexacarbonyl at 78 K. Neutron diffraction study. Acta Crystallogr. 1975;B31:2649–58.CrossRefGoogle Scholar
  66. 66.
    Arnesen SV, Seip HM. Studies on the failure of the first Born approximation in electron diffraction. V. Molybdenum- and tungsten hexacarbonyl. Acta Chem Scand. 1966;20:2711–27.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Manuel J. S. Monte
    • 1
  • Ana R. R. P. Almeida
    • 1
  • Rafael Notario
    • 2
  1. 1.Centro de Investigação em Química (CIQUP), Department of Chemistry and Biochemistry, Faculty of ScienceUniversity of PortoPortoPortugal
  2. 2.Instituto de Química Física “Rocasolano”, CSICMadridSpain

Personalised recommendations