Skip to main content
Log in

Thermodynamic studies on the systems M–Te–O (M = Nd, Sm)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard Gibbs energies of formation of Nd2TeO6 and M6TeO12 (where M = Nd, Sm) were determined from vapour pressure measurements. The vapour pressure of TeO2(g) was measured by employing thermogravimetry-based transpiration technique. The temperature dependence of the vapour pressure of TeO2(g) over the mixtures Nd2TeO6+Nd6TeO12, generated by the incongruent vapourisation reaction, 3Nd2TeO6(s) → Nd6TeO12(s)+2TeO2(g)+O2(g), was measured in the temperature range 1,408–1,495 K. Similarly, the vapour pressure of TeO2(g) over the mixtures M6TeO12+M2O3 (where M = Nd, Sm), generated by the incongruent vapourisation reaction, M6TeO12(s) → 3M2O3(s)+TeO2(g)+½O2(g), was measured in the temperature range 1,703–1,773 and 1,633–1,753 K for Nd6TeO12(s) and Sm6TeO12(s), respectively. Enthalpy increments of M2TeO6(s) (where M = Nd, Sm) were determined by inverse drop calorimetric method in the temperature range 573–1,273 K. The thermodynamic functions, viz., heat capacity, entropy and free energy functions, were derived from the measured values of enthalpy increments. A mean value of −2,426.2 ± 0.6 and −2,417.9 ± 1.1 kJ mol−1 was obtained for \( \Updelta_{\text{f} } H_{298}^{\text{o}} \)(Nd2TeO6, s) and \( \Updelta_{\text{f}} H_{298}^{\text{o}} \)(Sm2TeO6, s), respectively, by combining the value of \( \Updelta_{\text{f}} G^{\text{o}} \)(Nd2TeO6, s) and \( \Updelta_{\text{f}} G^{\text{o}} \)(Sm2TeO6, s) derived from vapour pressure data and the free energy functions derived from the drop calorimetric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kleykamp H. Chemical states of the fission products in oxide fuels. J Nucl Mater. 1985;131:221–46.

    Article  CAS  Google Scholar 

  2. Cordfunke EHP, Konings RJM. Chemical interaction in water cooled nuclear fuel: a thermochemical approach. J Nucl Mater. 1988;152:301–9.

    Article  Google Scholar 

  3. Atanasova L, Dimitrova GB. Heat capacity and thermodynamic properties of tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3. J Therm Anal Calorim. 2012;107:809–12.

    Article  CAS  Google Scholar 

  4. Gospodinov G, Atanasova L. Specific thermal and thermodynamic properties of the tellurites Fe2(TeO3)3, Fe2TeO5 and Fe2Te4O11. J Therm Anal Calorim. 2008;91:655–7.

    Article  CAS  Google Scholar 

  5. Khadilkar HV, Bhojane SM, Kulkarni J, Kulkarni SG. Thermal properties of Na2TeO4(s) and TiTe3O8(s). J Therm Anal Calorim. 2013;111(1):939–42.

    Article  CAS  Google Scholar 

  6. Pankajavalli R, Jain A, Babu R, Ananthasivan K, Anthonysamy S, Ganesan V. Thermodynamic characterization of lanthanum tellurate. J Nucl Mater. 2010;397:116–21.

    Article  CAS  Google Scholar 

  7. Pankajavalli R, Jain A, Babu R, Anthonysamy S, Ananthasivan K, Ganesan V, Nagarajan K. Thermodynamic studies on Pr2TeO6. J Therm Anal Calorim. 2013;111:1609–14.

    Article  CAS  Google Scholar 

  8. Pankajavalli R, Jain A, Sharma A, Anthonysamy S, Ganesan V. Thermodynamic investigation on M–Te–O (M = Sc, Y) system. J Therm Anal Calorim. 2013;112:83–93.

    Article  CAS  Google Scholar 

  9. Jain A, Pankajavalli R, Babu R, Anthonysamy S, Ganesan V. Thermodynamic studies on Sn–Te–O system. J Therm Anal Calorim. 2013;112:109–16.

    Article  CAS  Google Scholar 

  10. Aruna K, Dash S, Singh Z, Sen BK, Venugopal V. The standard molar Gibbs energy of formation of CeTe2O6(s) and R2TeO6(s) (R = La, Nd, Dy, Y). J Alloys Compd. 2010;496:20–4.

    Article  Google Scholar 

  11. Pankajavalli R, Jain A, Anthonysamy S. In: Proceedings of International Symposium on Material Chemistry (ISMC-06). Mumbai, India; December 4–8, 2006; p. 101–2.

  12. Balakrishnan S, Pankajavalli R, Ananthasivan K, Anthonysamy S. Thermodynamic stability of Sm2TeO6. Thermochim Acta. 2008;467:80–5.

    Article  CAS  Google Scholar 

  13. Sreedharan OM, Dharwadkar SR, Chandrasekharaiah MS. BARC Report No. O-239; 1973.

  14. Muenow DW, Hastie JW, Hauge R, Bautista R, Margrave JL. Vaporization, thermodynamics and structures of species in the tellurium+oxygen system. Trans Faraday Soc. 1969;65:3210–20.

    Article  CAS  Google Scholar 

  15. Knacke O, Kubaschewski O, Hesselmann K. Thermochemical properties of inorganic substances. 2nd ed. Berlin: Springer; 1991.

    Google Scholar 

  16. Agarwal R, Singh Z. Enthalpy increments of Ba2Te3O8(s) and Ba3Te2O9(s) compounds. J Alloys Compd. 2006;414:230–4.

    Article  CAS  Google Scholar 

  17. Chase MW. NIST-JANAF thermochemical tables. 4th ed. Gaithersburg: American Institute of Physics for the National Institute of Standards and Technology; 1998.

    Google Scholar 

  18. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK. Selected values of the thermodynamic properties of elements. Metals Park: American Society for Metals; 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anthonysamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Pankajavalli, R., Babu, R. et al. Thermodynamic studies on the systems M–Te–O (M = Nd, Sm). J Therm Anal Calorim 115, 1279–1287 (2014). https://doi.org/10.1007/s10973-013-3396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3396-5

Keywords

Navigation