Skip to main content
Log in

Thermophoretic isolation of circulating tumor cells, numerical simulation and design of a microfluidic chip

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we design a novel microfluidic chip to analyze and simulate the thermophoretic isolation of circulating tumor cells. For the first time, separation of circulating tumor cells from same size peripheral blood cells is examined by thermophoresis. Moreover, a discrete heat source was used to attenuate the separation efficiency, instead of a continuous heat source. Physical properties, such as thermal conductivity, gravity and hydrodynamic forces, were used in numerical design of a microfluidic chip to preferably move white blood cells toward colder walls, due to thermophoresis. To examine the separation process, or differentiated upward migration of cells between the fluid layers, the creeping flow and continuity equations are simultaneously solved along with the constituent forces by FEM modeling. Results show that upon applying a minimum temperature difference of 1 °C, white blood cells are effectively separated from tumor cells, in a 4.5-mm-long microchannel. Maintaining an oscillating/symmetrical temperature gradient in the longitudinal direction minimizes the required separation length of the channel. Moreover, for samples with relatively wide range of size distributions, thermophoresis can robustly separate the analytes, even for the same diameter analytes where the difference in buoyancy or gravity forces is infinitesimal or not present. Such small temperature difference in walls does not denature cells, the overall design is relatively cheap to apply and requires simple fabrication, and the separation is implemented label-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C s :

Thermophoretic correction factor

d p :

Diameter of particle/m

F B :

Buoyancy force/N

F D :

Drag force/N

F g :

Gravity force/N

F T :

Thermophoretic force/N

g :

Gravitational acceleration/m s−2

k :

Thermal conductivity of blood/W m−1 K−1

Kn :

Knudsen number

k P :

Thermal conductivity of particle/W m−1 K−1

m p :

Mass of particle/kg

p :

Pressure/Pa

r p :

Radius of particle/m

Re :

Reynolds number

u :

Carrier fluid velocity/m s−1

\(\vec{u}\) :

Velocity vector/m s−1

T :

Temperature/K

t:

Time/s

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {V}_{\text{p}}\) :

Particle velocity vector/m s−1

λ :

Molecular mean free path

μ :

Dynamic viscosity/Pa s

ρ :

Density of blood/g mL−1

ρ p :

Density of particle/g mL−1

τ p :

Defined in Eq. (5)

CTC:

Circulating tumor cell

BDF:

Backward differentiation formula

FEM:

Finite element method

MUMPS:

Multifrontal massively parallel sparse direct solver

RBC:

Red blood cell

WBC:

White blood cell

References

  1. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9. https://doi.org/10.1038/nature13118.

    Article  CAS  PubMed  Google Scholar 

  2. Liu M, Novak U, Plazl I, Franko M. Optimization of a thermal lens microscope for detection in a microfluidic chip. Int J Thermophys. 2014;35:2011–22. https://doi.org/10.1007/s10765-013-1515-y.

    Article  CAS  Google Scholar 

  3. Li P, Stratton ZS, Dao M, Ritz J, Huang TJ. Probing circulating tumor cells in microfluidics. Lab Chip. 2013;13:602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoshino K, Huang Y-Y, Lane N, Huebschman M, Uhr JW, Frenkel EP, et al. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip. 2011;11:3449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS, Kant Chaudhuri P, et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip. 2014;14:128–37.

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip. 2012;12:1753.

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P-H, et al. Acoustic separation of circulating tumor cells. Proc Natl Acad Sci USA. 2015;112:4970–5. https://doi.org/10.1073/pnas.1504484112.

    Article  CAS  PubMed  Google Scholar 

  9. Alshareef M, Metrakos N, Juarez Perez E, Azer F, Yang F, Yang X, et al. Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics. 2013;7:11803. https://doi.org/10.1063/1.4774312.

    Article  CAS  PubMed  Google Scholar 

  10. Pohl HA. Some effects of nonuniform fields on dielectrics. J Appl Phys. 1958;29:1182–8. https://doi.org/10.1063/1.1723398.

    Article  Google Scholar 

  11. Vigolo D, Rusconi R, Stone HA, Piazza R. Thermophoresis: microfluidics characterization and separation. Soft Matter. 2010;6:3489.

    Article  CAS  Google Scholar 

  12. Geelhoed PF, Lindken R, Westerweel J. Thermophoretic separation in microfluidics. Chem Eng Res Des. 2006;84:370–3.

    Article  CAS  Google Scholar 

  13. Ahmadi AA, Khodabandeh E, Moghadasi H, Malekian N, Akbari OA, Bahiraei M. Numerical study of flow and heat transfer of water-Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian–Lagrangian approach. J Therm Anal Calorim. 2018;132:651–65. https://doi.org/10.1007/s10973-017-6798-y.

    Article  CAS  Google Scholar 

  14. Piazza R. Thermophoresis: moving particles with thermal gradients. Soft Matter. 2008;4:1740.

    Article  CAS  Google Scholar 

  15. Singh S, Sharma N. Numerical study of effect of thermophoresis on particles trajectory in a rectangular micro-channel. Int J Res Eng Appl Sci. 2012;2:1707–18.

    Google Scholar 

  16. Moshizi SA, Pop I. Conjugated effect of joule heating and magnetohydrodynamic on laminar convective heat transfer of nanofluids inside a concentric annulus in the presence of slip condition. Int J Thermophys. 2016;37:72. https://doi.org/10.1007/s10765-016-2082-9.

    Article  CAS  Google Scholar 

  17. Eslamian M, Saghir MZ. Novel thermophoretic particle separators: numerical analysis and simulation. Appl Therm Eng. 2013;59:527–34.

    Article  CAS  Google Scholar 

  18. Liu Z, Chen Z, Shi M. Thermophoresis of particles in aqueous solution in micro-channel. Appl Therm Eng. 2009;29:1020–5.

    Article  CAS  Google Scholar 

  19. Thamdrup LH, Larsen NB, Kristensen A. Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels. Nano Lett. 2010;10:826–32.

    Article  CAS  PubMed  Google Scholar 

  20. Maeda YT, Tlusty T, Libchaber A. Effects of long DNA folding and small RNA stem-loop in thermophoresis. Proc Natl Acad Sci. 2012;109:17972–7.

    Article  PubMed  Google Scholar 

  21. Nivedita N, Ligrani P, Papautsky I. Dean flow dynamics in low-aspect ratio spiral microchannels. Sci Rep. 2017;7:44072.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip. 2012;12:2881–7.

    Article  CAS  PubMed  Google Scholar 

  23. Minea AA. Numerical studies on heat transfer enhancement in different closed enclosures heated symmetrically. J Therm Anal Calorim. 2015;121:711–20. https://doi.org/10.1007/s10973-015-4607-z.

    Article  CAS  Google Scholar 

  24. White FM. Fluid mechanics. 7th ed. New York City: Elsevier; 2012.

    Google Scholar 

  25. Jomeh S, Hoorfar M. Numerical modeling of mass transport in microfluidic biomolecule-capturing devices equipped with reactive surfaces. Chem Eng J. 2010;165:668–77.

    Article  CAS  Google Scholar 

  26. Epstein PS. Zur Theorie des Radiometeres. Z Phys. 1929;54:537–63.

    Google Scholar 

  27. Young B, O’Dowd G, Woodford P. Wheater’s functional histology: a text and colour atlas. 6th ed. New York City: Elsevier; 2006.

    Google Scholar 

  28. COMSOL AB. COMSOL multiphysics reference guide: time-dependent solvers. Stockholm: COMSOL AB; 2011. http://www.lmn.pub.ro/~daniel/ElectromagneticModelingDoctoral/Books/COMSOL4.3/mph/COMSOLMultiphysicsReferenceGuide.pdf.

  29. Dolfi SC, Chan LL-Y, Qiu J, Tedeschi PM, Bertino JR, Hirshfield KM, et al. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab. 2013;1:20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013;4(e877):2013.

    Google Scholar 

  31. Federici G, Gao X, Slawek J, Arodz T, Shitaye A, Wulfkuhle JD, et al. Systems analysis of the NCI-60 cancer cell lines by alignment of protein pathway activation modules with “-OMIC” data fields and therapeutic response signatures. Mol Cancer Res. 2013;11:676–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Science, Research and Technology (MSRT), Iran. The authors would like to acknowledge the products and services provided by MSRT that facilitated this research, including the CAD software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Asiaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiaei, S., Darvishi, V., Davari, M.H. et al. Thermophoretic isolation of circulating tumor cells, numerical simulation and design of a microfluidic chip. J Therm Anal Calorim 137, 831–839 (2019). https://doi.org/10.1007/s10973-018-07996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-07996-7

Keywords

Navigation