Skip to main content
Log in

Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Eutectic alloys are considered promising candidates for high-temperature structural applications. In spite of this, quantitative examination of the effect of the length scale of the eutectic microstructure on mechanical properties remains a challenge. In this sense, assessments of morphology, size and distribution of the phases forming the eutectic mixture, solidified under transient regime and different cooling conditions, endure necessary. In the present study, a large spectrum of cooling rates has been obtained during unsteady-state directional solidification of an Al–33 mass% Cu alloy. The main techniques utilized were: optical microscopy; scanning electron microscopy with X-ray energy-dispersive spectroscopy, X-ray fluorescence spectroscopy and Vickers hardness (HV). The resulting microstructures related to various solidification cooling rates are shown to be formed by eutectic colonies. Three microstructural zones constitute the colony, that is, a fine central regular lamellar Al–Al2Cu eutectic, an intermediate narrow wavy lamellar eutectic and a coarse boundary eutectic zone. Iron impurity appears to be able to degenerate the eutectic into a more randomly distributed microstructure. The colonies’ morphology exhibits a transition from regular to platelike cells with the increase in cooling rate. Furthermore, the evolution of hardness as a function of the colony spacings is outlined. The highest hardness of 200 HV is related to an ultrafine bimodal structure formed by platelike eutectic colonies with 13 µm in spacing with very fine lamellae of 330 nm in spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Stefanescu DM, Abbaschian GJ, Bayuzick RJ. Solidification processing of eutectic alloys. Warrendale: Metallurgical Society; 1988. ISBN 0873390334.

    Google Scholar 

  2. Campbell J. Castings. 2nd ed. Butterworth-Heinemann; 2003.

  3. Silva BL, Garcia A, Spinelli JE. Complex eutectic growth and Bi precipitation in ternary Sn–Bi–Cu and Sn–Bi–Ag alloys. J Alloys Compd. 2017;691:600–5.

    Article  CAS  Google Scholar 

  4. Elliot R. Eutectic solidification. Int Met Rev. 1997;22:161–86.

    Google Scholar 

  5. Tiller WA. Liquid metals and solidification. Cleveland: ASM; 1958.

    Google Scholar 

  6. Reyes RV, Bello TS, Kakitani R, Costa TA, Garcia A, Cheung N, Spinelli JE. Tensile properties and related microstructures aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater Sci Eng A. 2017;685:235–43.

    Article  CAS  Google Scholar 

  7. Kaya H, Çadırlı E, Gündüz M, Ulgen A. Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al–Si eutectic alloy. J Mater Eng Perform. 2003;12:544–51.

    Article  CAS  Google Scholar 

  8. Hosch T, England LG, Napolitano RE. Analysis of the high growth-rate transition in Al–Si eutectic solidification. J Mater Sci. 2009;44:4892–9.

    Article  CAS  Google Scholar 

  9. Kakitani R, Reyes RV, Spinelli JE, Cheung N, Garcia A. Relationship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al–Ni eutectic alloy. J Alloys Compd. 2018;733:59–68.

    Article  CAS  Google Scholar 

  10. Jackson KA, Hunt JD. Lamellar and rod eutectic growth. Trans Metall Soc AIME. 1966;236:1129–42.

    CAS  Google Scholar 

  11. Çadirli E, Ülgen A, Gündüz M. Directional solidification of the aluminium–copper eutectic alloy. Mater Trans JIM. 1999;40:989–96.

    Article  Google Scholar 

  12. Ourdjini A, Liu J, Elliott R. Eutectic spacing selection in Al–Cu system. Mater Sci Technol. 1994;10:312–8.

    Article  CAS  Google Scholar 

  13. Zimmermann M, Carrard M, Kurz W. Rapid solidification of Al–Cu eutectic alloy by laser remelting. Acta Metall. 1989;37:3305–13.

    Article  CAS  Google Scholar 

  14. Stoichev NV, Yaneva SB, Regel LL, Videnskiy IV. Eutectic solidification of Al–Cu alloys influenced by convection. Adv Space Res. 1988;8:171–4.

    Article  CAS  Google Scholar 

  15. Seetharaman V, Trivedi R. Eutectic growth: selection of interlamellar spacings. MTA. 1988;19:2955–64.

    Article  Google Scholar 

  16. Zimmermann M, Carrard M, Gremaud M, Kurz W. Characterization of the banded structure in rapidly solidified Al–Cu alloys. Mater Sci Eng A. 1991;134:1278–82.

    Article  Google Scholar 

  17. Yaneva S, Budurov S, Stoichev N, Chnistova S, Jonchev S. Eutectic crystallization of aluminium copper alloys (II). Influence of impurity elements. Kris Tech. 1975;10:395–400.

    Article  CAS  Google Scholar 

  18. Zimmermann M, Karma A, Carrard M. Oscillatory lamellar microstructure in off-eutectic Al–Cu alloys. Phys Rev B. 1990;42:833–7.

    Article  CAS  Google Scholar 

  19. Sahoo S, Ghosh S. Heat transfer, solidification, and microstructural evolution in Al–33Cu alloy during the starting of twin roll strip casting. Steel Res Int. 2014;85:207–18.

    Article  CAS  Google Scholar 

  20. Tiwary CS, Mahapatra DR, Chattopadhyay K. Effect of length scale on mechanical properties of Al–Cu eutectic alloy. Appl Phys Lett. 2012;101:171901.

    Article  CAS  Google Scholar 

  21. He G, Eckert J, Loser W, Schultz L. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater. 2003;2:33–7.

    Article  CAS  PubMed  Google Scholar 

  22. Park JM, Kim KB, Kim DH, Mattern N, Li R, Liu G, Eckert J. Multi-phase Al-based ultrafine composite with multi-scale microstructure. Intermetallics. 2010;18:1829–33.

    Article  CAS  Google Scholar 

  23. Singh RK, Chattopadhyay K, Lele S, Anantharaman TR. Impact of substrate temperature on rapid solidification of an Al–Cu eutectic alloy. J Mater Sci. 1982;17:1617–22.

    Article  CAS  Google Scholar 

  24. Bertorello HR, Biloni H. Structure and heat treatment influence on the tensile properties of Al–Al2Cu eutectic composites. Metall Trans A. 1972;3:73–82.

    Article  CAS  Google Scholar 

  25. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.

    Article  CAS  Google Scholar 

  26. Kashyap S, Tiwary CS, Chattopadhyay K. Effect of gallium on microstructure and mechanical properties of Nb–Si eutectic alloy. Intermetallics. 2011;19:1943–52.

    Article  CAS  Google Scholar 

  27. Gunduz M, Çadirli E. Directional solidification of aluminium–copper alloys. Mater Sci Eng A. 2002;327:167–85.

    Article  Google Scholar 

  28. Çadirli E, Büyük U, Engin S, Kaya H. Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys. J Alloys Compd. 2017;694:471–9.

    Article  CAS  Google Scholar 

  29. Mondolfo LF. Aluminum alloys: structure and properties. London: Butterworth; 1976.

    Google Scholar 

  30. Mertinger V, Szabo G, Barczy P, Kovacs A, Czel G. Gravity influenced convection in Al–Ni melt. Mater Sci Forum. 1996;215(216):331–6.

    Article  Google Scholar 

  31. Juarez-Hernandez A, Jones H. Growth temperature measurements and solidification microstructure selection of primary Al3Ni and eutectic in the αAl–Al3Ni system. Scr Mater. 1998;38:729–34.

    Article  CAS  Google Scholar 

  32. Moura ITL, Silva CLM, Cheung N, Goulart PR, Garcia A, Spinelli JE. Cellular to dendritic transition during transient solidification of a eutectic Sn 07 wt% Cu solder alloy. Mater Chem Phys. 2012;132:203–9.

    Article  CAS  Google Scholar 

  33. Zhao S, Li J, Liu L, Zhou Y. Eutectic growth from cellular to dendritic form in the undercooled Ag–Cu eutectic alloy melt. J Cryst Growth. 2009;311:1387–91.

    Article  CAS  Google Scholar 

  34. Walder S, Rayder PL. Critical solidification behavior of undercooled Ag–Cu alloys. J Appl Phys. 1993;74:6100–6.

    Article  CAS  Google Scholar 

  35. Drevet B, Camel D, Dupuy M, Favier JJ. Microstructure of the Sn–Cu6Sn5 fibrous eutectic and its modification by segregation. Acta Mater. 1996;44:4071–84.

    Article  CAS  Google Scholar 

  36. Ventura T, Terzi S, Rappaz M, Dahle AK. Effects of solidification kinetics on microstructure formation in binary Sn–Cu solder alloys. Acta Mater. 2011;59:1651–8.

    Article  CAS  Google Scholar 

  37. Han SH. Stability of a eutectic interface during directional solidification. PhD thesis, Iowa State University; 1995.

  38. Tewari N, Raj SV, Locci IE. A Comparison between growth morphology of eutectic cells/dendrites and single-phase cells/dendrites. Metall Mater Trans A. 2004;35:1632–5.

    Article  Google Scholar 

  39. Kurz W, Fisher DJ. Fundamentals of solidification. 3rd ed. Zurich: Trans Tech Publications; 1989.

    Google Scholar 

  40. Xu W, Feng YP, Li Y, Li ZY. Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification. Mater Sci Eng A. 2004;373:139–45.

    Article  CAS  Google Scholar 

  41. Ma D, Li Y, Ng SC, Jones H. Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—II. Microstructural length scales. Acta Mater. 2000;48:1741–51.

    Article  CAS  Google Scholar 

  42. Vida A, Freitas ES, Brito C, Cheung N, Arenas MA, Conde A, Damborenea J, Garcia A. Thermal parameters and microstructural development in directionally solidified Zn-rich Zn-Mg alloys. Metall Mater Trans A. 2016;47:3052–64.

    Article  CAS  Google Scholar 

  43. Rocha OFL, Siqueira CA, Garcia CA. Heat flow parameters affecting dendrite spacings during unsteady-state solidification of Sn–Pb and Al–Cu alloys. Metall Mater Trans A. 2003;34:995–1006.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP (São Paulo Research Foundation, Brazil: Grant 2017/12741-6) and CNPq - National Council for Scientific and Technological Development for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Spinelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakitani, R., de Gouveia, G.L., Garcia, A. et al. Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. J Therm Anal Calorim 137, 983–996 (2019). https://doi.org/10.1007/s10973-018-07992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-07992-x

Keywords

Navigation