Skip to main content
Log in

Analysis of the high growth-rate transition in Al–Si eutectic solidification

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The local solidification conditions and mechanisms associated with the flake-to-fiber growth mode transition in Al–Si eutectic alloys are investigated here using Bridgman-type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections, showing three-dimensional microstructural features. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake-to-fiber transition, whereas traditional spacing parameters are not effective indicators of the transition. For a thermal gradient of 7–14 K/mm, the transition was found to occur in two stages, appearing over velocity regimes from 0.10 to 0.50 mm/s and from 0.50 to 0.95 mm/s. The initial stage is dominated by in-plane plate breakup and rod formation within the plane of the plate, whereas the second stage is characterized by the onset of out-of-plane silicon rod growth, leading to the formation of an irregular fibrous structure. The boundary between the two stages is marked by widespread fibrous growth and the disappearance of the remnant flake structure, indicating a transition in the structural feature that governs the relevant diffusion length, from inter-flake spacing to inter-rod spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fat-Halla N (1987) J Mater Sci 22(3):1013. doi:10.1007/BF01103544

    Article  ADS  CAS  Google Scholar 

  2. Fat-Halla N (1989) J Mater Sci 24(7):2488. doi:10.1007/BF01174517

    Article  ADS  CAS  Google Scholar 

  3. Hafiz MF, Fat-Halla NK, Moshref SB (1990) Zeitschrift für Metallkunde 81(1):70

    CAS  Google Scholar 

  4. Hafiz M, Kobayashi T (1994) Scripta Metallurgica et Materialia 31(6):701

    Article  CAS  Google Scholar 

  5. Zuo M, Liu XF, Sun QQ (2009) J Mater Sci 44(8):1952. doi:10.1007/s10853-009-3287-0

    Article  ADS  CAS  Google Scholar 

  6. Garat M, Laslaz G, Jacob S, Meyer P, Guerin PH, Adam R (1992) Trans Am Foundrymen’s Soc 100:821

    CAS  Google Scholar 

  7. Lu SZ, Hellawell A (1987) Metall Trans A 18A(10):1721

    ADS  CAS  Google Scholar 

  8. Jenkinson DC, Hogan LM (1975) J Cryst Growth 28(2):187

    Article  CAS  Google Scholar 

  9. Dahle AK, Nogita K, McDonald SD, Dinnis C, Lu L (2005) Mater Sci Eng A 413–414:243

    Google Scholar 

  10. Day MG, Hellawell A (1968) Proc R Soc Math Phys Eng Sci 305(1483):473

    Google Scholar 

  11. Lu SZ, Hellawell A (1985) J Cryst Growth 73(2):316

    Article  ADS  CAS  Google Scholar 

  12. Tenekedjiev N, Gruzleski JE (1991) Trans Am Foundry Soc 99:1

    CAS  Google Scholar 

  13. Jiang H, Sokolowski JH, Djurdjevic MB, Evans WJ (2000) Trans Am Foundry Soc 108:505

    CAS  Google Scholar 

  14. Hernandez FCR, Sokolowski JH (2005) J Met 57

  15. Napolitano RE, England LG (2004) Solidification of aluminum alloys. TMS, Warrendale, PA

  16. Fredriksson H, Hillert M, Lange N (1973) J Inst Met 101:285

    CAS  Google Scholar 

  17. Toloui B, Hellawell A (1976) Acta Metall 24(6):565

    Article  CAS  Google Scholar 

  18. Elliott R, Glenister SMD (1980) Acta Metall 28(11):1489

    Article  CAS  Google Scholar 

  19. Atasoy O (1984) Aluminium 60(4):275

    CAS  Google Scholar 

  20. Hogan LM, Song H (1987) Metall Trans A 18A(4):707

    ADS  CAS  Google Scholar 

  21. Liu J, Zhou Y, Shang B (1990) Acta Metallurgica et Materialia 38(7):1321

    Article  CAS  Google Scholar 

  22. Magnin P, Mason JT, Trivedi R (1991) Acta Metallurgica et Materialia 39(4):469

    Article  CAS  Google Scholar 

  23. Khan S, Elliott R (1996) J Mater Sci 31(14):3731. doi:10.1007/BF00352787

    Article  ADS  CAS  Google Scholar 

  24. Wolczynski W, Billia B, Rabczak K (1996) Mater Sci Forum 215:323

    Google Scholar 

  25. Cuprys R, Major B, Wolczynski W (2000) Mater Sci Forum 329:161

    Google Scholar 

  26. Guzik E, Kopyczynski D (2006) Metall Mater Trans A 37A(10):3057

    Article  ADS  CAS  Google Scholar 

  27. Steen HAH, Hellawell A (1972) Acta Metall 20(3):363

    Article  CAS  Google Scholar 

  28. Shamsuzzoha M, Hogan LM (1986) J Cryst Growth 76(2):429

    Article  ADS  CAS  Google Scholar 

  29. Li L, Zhang YD, Esling C, Zhao ZH, Zuo YB, Zhang HT, Cui JZ (2009) J Mater Sci 44(4):1063. doi:10.1007/s10853-008-3158-0

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible by support from the National Science Foundation (NSF), Division of Materials Research, under Award no. 0237566. The authors would also like to thank P. Matlage for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Napolitano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosch, T., England, L.G. & Napolitano, R.E. Analysis of the high growth-rate transition in Al–Si eutectic solidification. J Mater Sci 44, 4892–4899 (2009). https://doi.org/10.1007/s10853-009-3747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3747-6

Keywords

Navigation