Skip to main content
Log in

Biologically active maleimido aromatic 1,3,4-oxadiazole derivatives evaluated thermogravimetrically as stabilizers for rigid PVC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Four novel N-aryl maleimide-bearing aromatic 1,3,4-oxadiazole systems were synthesized via a thermally induced cyclodehydration reaction of their corresponding precursors maleimido aromatic hydrazide derivatives. Their chemical structures were confirmed by elemental analyses, FTIR, 1H-NMR and mass spectroscopy. They showed a good antimicrobial activity against Bacillus subtilis, Streptococcus pneumoniae, Escherichia coli, Aspergillus fumigatus, Geotrichum candidum and Syncephalastrum racemosum using agar well diffusion method. The investigated derivatives are thermally stable and start decomposition in the temperature range above 250–300 °C. They were investigated for thermal stabilization of rigid PVC using thermogravimetric analysis technique, in nitrogen. They showed a greater stabilizing efficiency as illustrated by their higher initial decomposition temperature and higher residual mass percent at particular temperatures relative to dibasic lead carbonate, cadmium–barium–zinc stearate complex and di-n-octyltin bis (isooctylmercaptoacetate) (n-octyltin mercaptide, n-OTM) reference thermal stabilizers. Their stabilizing efficiency is also demonstrated by lower rates of both discoloration and degree of chain scission of the polymer during degradation. The electron-donating substituent groups in the aromatic ring of 1,3,4-oxadiazole part of these derivatives increased their stabilizing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Starnes WH Jr. Structural and mechanistic aspects of the thermal degradation of poly (vinyl chloride). Prog Polym Sci. 2002;27:2133–70.

    Article  CAS  Google Scholar 

  2. Starnes WH Jr, Ge X. Mechanism of autocatalysis in the thermal dehydrochlorination of poly(vinyl chloride). Macromolecules. 2004;37:352–9.

    Article  CAS  Google Scholar 

  3. Qi Y, Wu W, Han L, Qu H, Han X, Wang A, Xu J. Using TG-FTIR and XPS to understand thermal degradation and flame-retardant mechanism of flexible poly(vinyl chloride) filled with metallic ferrites. J Therm Anal Calorim. 2016;123:1263–71.

    Article  CAS  Google Scholar 

  4. Jakić M, Vrandečić NS, Erceg M. Kinetic analysis of the non-isothermal degradation of poly(vinyl chloride)/poly(ethylene oxide) blends. J Therm Anal Calorim. 2016;123:1513–22.

    Article  Google Scholar 

  5. Jakić M, Vrandečić NS, Erceg M. The influence of poly(ethylene glycol) on thermal properties of poly(vinyl chloride)/poly(ethylene oxide) blends. J Therm Anal Calorim. 2017;127:663–74.

    Article  Google Scholar 

  6. Starnes WH Jr. Structural defects in poly(vinyl chloride). J Polym Sci, Part A: Polym Chem. 2005;43:2451–67.

    Article  CAS  Google Scholar 

  7. Starnes WH Jr. Overview and assessment of recent research on the structural defects in poly(vinyl chloride). Polym Degrad Stab. 2012;97:1815–21.

    Article  CAS  Google Scholar 

  8. Yu J, Sun L, Ma C, Qiao Y, Yao H. Thermal degradation of PVC: a review. Waste Manag. 2016;48:300–14.

    Article  CAS  Google Scholar 

  9. Fahmy MM. Inhibition of the thermal degradation of rigid poly(vinyl chloride) using poly(N-[4-(N’-phenylaminocarbonyl)phenyl]maleimide). J Appl Polym Sci. 2010;115:2013–8.

    Article  CAS  Google Scholar 

  10. Mohamed NA, Al-Magribi WM. N-(Substituted phenyl) itaconimides as organic stabilizers for rigid poly(vinyl chloride) against thermal degradation. Polym Degrad Stab. 2002;78:149–65.

    Article  CAS  Google Scholar 

  11. Mohamed NA, Farag ZR, Sabaa MW. Thermal degradation behavior of poly(vinyl chloride) in presense of poly(N-acryloyl-N’-cyanoacetohydrazide). J Appl Polym Sci. 2008;109:2362–8.

    Article  CAS  Google Scholar 

  12. Shnawa HA, Jahani Y, Khalaf MN, Taobi AH. The potential of tannins as thermal co-stabilizer additive for polyvinyl chloride. J Therm Anal Calorim. 2016;123:1253–61.

    Article  CAS  Google Scholar 

  13. Folarin OM, Sadiku ER. Thermal stabilizers for poly(vinyl chloride): a review. Int J Phys Sci. 2011;6:4323–30.

    Google Scholar 

  14. Wypych G. PVC degradation & stabilization. 2nd ed. Toronto: ChemTec Publishing; 2008. p. 295–335.

    Google Scholar 

  15. Shnawa HA. Thermal stabilization of polyvinyl chloride with traditional and naturally derived antioxidant and thermal stabilizer synthesized from tannins. J Therm Anal Calorim. 2017;129:789–99.

    Article  CAS  Google Scholar 

  16. Mohamed NA, Abd El-Ghany NA, Fahmy MM, Ahmed MH. Thermally stable antimicrobial PVC/maleimido phenyl thiourea composites. Adv Polym Technol. 2016;35:21537–46.

    Article  Google Scholar 

  17. Fahmy MM, Mohamed RR, Mohamed NA. Novel antimicrobial organic thermal stabilizer and co-stabilizer for rigid PVC. Molecules. 2012;17:7927–40.

    Article  CAS  Google Scholar 

  18. Xu X, Chen S, Shi Y, Wu B, Ma M, Wang X. Novel organic antibacterial thermal stabilizers for transparent poly(vinyl chloride). J Therm Anal Calorim. 2015;122:1435–44.

    Article  CAS  Google Scholar 

  19. Pereiva ER, Fabre S, Sancelme M. Antimicrobial activities of indolocarbazole and bis-indole protein kinase C inhibitors. II. Substitution on maleimde nitrogen with functional groups bearing a labile hydrogen. J Antibiot. 1995;48:863–8.

    Article  Google Scholar 

  20. Salewska N, Boros-Majewska J, Łącka I, Chylińska K, Sabisz M, Milewski S, Milewska MJ. Chemical reactivity and antimicrobial activity of N-substituted maleimides. J Enzyme Inhib Med Chem. 2012;27:117–24.

    Article  CAS  Google Scholar 

  21. Chin TS, Nasir FI, Hassan NI. Synthesis and antimicrobial activities of eleven N-substituted maleimides. Malays J Anal Sci. 2016;20:741–50.

    Article  Google Scholar 

  22. Zentz F, Valla A, Guillou RL, Labia R, Mathot A-G, Sirot D. Synthesis and antimicrobial activities of N-substituted imides. II Farmaco. 2002;57:421–6.

    Article  CAS  Google Scholar 

  23. Sharma S, Sharma PK, Kumar N, Dudhe R. A review: oxadiazole their chemistry and pharmacological potentials. Der Pharma Chemica. 2010;2:253–63.

    CAS  Google Scholar 

  24. El-Emam AA, Al-Deeb OA, Al-Omar M. Synthesis, antibacterial and anti-HIV activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazolin-2-thiones. Bioorg Med Chem. 2004;12:5107–13.

    Article  CAS  Google Scholar 

  25. Maslat AO, Abussaud M, Tashtoush H, Al-Talib M. Synthesis, antibacterial, antifungal and genotoxic activity of bis-1,3,4-oxadiazole derivatives. Pol J Pharmacol. 2002;54:55–9.

    CAS  Google Scholar 

  26. Nagalakshmi G. Synthesis, antimicrobial and anti-inflammatory activity of 2,5-disubstituted-1,3,4-oxadiazoles. Indian J Pharm Sci. 2008;70:49–55.

    Article  CAS  Google Scholar 

  27. Khalilullah H, Ahsan MJ, Hedaitullah M, Khan S, Ahmed B. 1,3,4-oxadiazole: a biologically active scaffold. Mini Rev Med Chem. 2012;12:789–801.

    Article  CAS  Google Scholar 

  28. Yar MS, Akhter MW. Synthesis and anticonvulsant activity of substituted oxadiazole and thiadiazole derivatives. Acta Pol Pharm. 2009;66:393–7.

    CAS  Google Scholar 

  29. Kashaw SK, Gupta V, Kashaw V, Mishra P, Stables JP, Jain NK. Anticonvulsant and sedative-hypnotic activity of some novel 3-[5-(4-substituted) phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazoline-4(3H)-ones. Med Chem Res. 2010;19:250–61.

    Article  CAS  Google Scholar 

  30. Abu-Zaied MA, El-Telbani EM, Elgemeie GH, Nawwar GA. Synthesis and in vitro anti-tumor activity of new oxadiazole thioglycosides. Eur J Med Chem. 2011;46:229–35.

    Article  CAS  Google Scholar 

  31. Sabaa MW, Mikhael MG, Mohamed NA, Yassin AA. N-substituted maleimides as thermal stabilizers for rigid polyvinylchloride. Die Angew Makromol Chem. 1989;168:23–35.

    Article  CAS  Google Scholar 

  32. Mohamed NA, Al-afaleq EI. Aromatic 1,3,4-oxadiazoles as thermal stabilizers for rigid poly(vinyl chloride). Polymer. 1999;40:617–27.

    Article  CAS  Google Scholar 

  33. Mohamed NA, Abd El-Ghany NA, Fahmy MM, Ahmed MH. Thermally stable antimicrobial poly(vinyl chloride)/maleimido aromatic hydrazide composites. J Vinyl Addit Technol. 2016;22:247–58.

    Article  CAS  Google Scholar 

  34. Rahman A, Choudhary MI, Thompson WJ. Preparation and antimicrobial activity of some carboxymethyl chitosan acyl thiourea derivatives. Pestic Res J. 2001;16:2024–7.

    Google Scholar 

  35. Rathore HS, Mittal S, Kumar S. Synthesis, characterization and antifungal activities of 3d-transition metal complexes of 1-acetylpiperazinyldithiocarbamate, M(acpdtc)2. Pestic Res J. 2000;12:103–7.

    Google Scholar 

  36. Zhong Z, Xing R, Liu S, Wang L, Cai S, Li P. Synthesis and bioactivity of pyrazole acyl thiourea derivatives. Carbohydr Res. 2008;343:566–70.

    Article  CAS  Google Scholar 

  37. Scott G, Tahan M, Vyvoda J. The effect of thermal processing on PVC-IV. Photo-oxidation of stabilized PVC. Eur Polym J. 1979;15:51–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N.A. Biologically active maleimido aromatic 1,3,4-oxadiazole derivatives evaluated thermogravimetrically as stabilizers for rigid PVC. J Therm Anal Calorim 131, 2535–2546 (2018). https://doi.org/10.1007/s10973-017-6843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6843-x

Keywords

Navigation