Skip to main content
Log in

Thermal and oxidative stability of Sacha Inchi oil and capsules formed with biopolymers analyzed by DSC and 1H NMR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The oxidative stability of edible oils is an important feature to know due the undesirable changes that can occur in the storage. In this way, the oxidative induction time (OIT) value is an indicative to prevent this effect. The objectives of this study were to evaluate the omega-3 content and kinetic parameters of Sacha Inchi oil (SIO) and capsules that are formed with biopolymers, in addition, there were analyzed with differential scanning calorimetry (DSC) and proton nuclear magnetic resonance (1H NMR). The SIO and capsules, formed using an emulsion, were analyzed with DSC in an oxygen atmosphere to determine the OIT value in isothermal conditions at 100, 120 and 150 °C. The kinetic parameters (activation energy, pre-exponential factor and z value) of SIO were obtained, and the stability time was predicted at different temperatures. The 1H NMR spectra enabled us to assess the identification and percentage relative before and after the isothermal DSC oxidation of omega-3 concentration and formation of their oxidized compounds. (E-E)-2,4-Alkadienals were the primary oxidized compound and is strongly correlated with the decrease in omega-3 content. Isothermal DSC is a useful to determine the OIT (min) and kinetic parameters to predict the stability oxidation in different edible oils and thus prevent the inadequate consumption of edible oils oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Micić DM, Ostojić SB, Simonović MB, Krstić G, Pezo LL, Simonović BR. Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochim Acta. 2015;601:39–44.

    Article  Google Scholar 

  2. McClements DJ, Decker EL. Lipids. In: Damodaran S, Parkin KL, Fennema OR, editors. Fennema´s food chemistry. Boca Raton: CRC Press; 2007. p. 155–216.

  3. Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology. 2015;8:283–8.

    Google Scholar 

  4. FAO/WHO. Dietary fats and oils in human nutrition. In: FAO food and nutrition series No. 20. Rome: Food and Agricultural Organization of the United Nations; 1988. p. 1–44.

  5. Debnath S, Rastogi NK, Krishna AGG, Lokesh BR. Effect of frying cycles on physical, chemical and heat transfer quality of rice bran oil during deep-fat frying of poori: an Indian traditional fried food. Food Bioprod Process. 2012;90:249–56.

    Article  CAS  Google Scholar 

  6. McClements DJ. Nanoparticle- and microparticle-based delivery systems. 1st ed. Boca Raton: CRC Press; 2015.

    Google Scholar 

  7. Gaonkar A, Vasisht N, Khare A, Sobel R. Microencapsulation in the food industry: a practical implementation guide. 1st ed. San Diego: Academic Press; 2014.

    Google Scholar 

  8. Cortés-Rojas DF, Souza CRF, Oliveira WP. Encapsulation of eugenol rich clove extract in solid lipid carrier. J Food Eng. 2014;127:34–42.

    Article  Google Scholar 

  9. Akhtar M, Murray BS, Afeisume EI, Khew SH. Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology. Food Hydrocoll. 2014;34:62–7.

    Article  CAS  Google Scholar 

  10. Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115:443–51.

    Article  CAS  Google Scholar 

  11. Guillén MD, Ruiz A, Cabo N, Chirinos R, Pascual G. Characterization of Sacha Inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc. 2003;80(8):755–62.

    Article  Google Scholar 

  12. Follegatti-Romero LA, Piantino CR, Grimaldi R, Cabral FA. Supercritical CO2 extraction of omega-3 rich oil from Sacha Inchi (Plukenetia volubilis L.) seeds. J Supercrit Fluids. 2009;49(3):323–9.

    Article  CAS  Google Scholar 

  13. Fanali C, Dugo L, Cacciola F, Beccaria M, Grasso S, Dachà M, Dugo P, Mondello L. Chemical characterization of Sacha Inchi (Plukenetia volubilis L.) oil. J Agric Food Chem. 2011;59(4):13043–9.

    Article  CAS  Google Scholar 

  14. Maurer NE, Hatta-Sakoda B, Pascual-Chagman G, Rodriguez-Saona LE. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, Sacha Inchi (Plukenetia volubilis L.) oil. Food Chem. 2012;134(2):1173–80.

    Article  CAS  Google Scholar 

  15. Vicente J, Carvalho MG, Garcia-Rojas EE. Fatty acids profile of sacha inchi oil and blends by 1H NMR and GC–FID. Food Chem. 2015;181:215–21.

    Article  CAS  Google Scholar 

  16. Gabbott PA. Practical introduction to differential scanning calorimetry. In: Gabbott P, editor. Principles and applications of thermal analysis. Oxford: Blackwell Publiching; 2008. p. 2–49.

    Chapter  Google Scholar 

  17. Bevis JA. Applications of thermal analysis in electrical cable manufacture. In: Gabbott P, editor. Principles and applications of thermal analysis. Oxford: Blackwell Publiching; 2008. p. 165–89.

    Google Scholar 

  18. Barison A, Silva CWP, Campos FR, Simonelli F, Lenz CA, Ferreira AG. A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem. 2010;48:642–50.

    CAS  Google Scholar 

  19. Almoselhy RIM, Allam MH, El-Kalyoubi MH, El-Sharkawy AA. 1H NMR spectral analysis as a new aspect to evaluate the stability of some edible oils. Ann Agric Sci. 2014;59(2):201–6.

    Google Scholar 

  20. Alonso-Salces RM, Holland MV, Guillou C. 1H-NMR fingerprinting to evaluate the stability of olive oil. Food Control. 2011;22(12):2041–6.

    Article  CAS  Google Scholar 

  21. Cordella CBY, Tekye T, Rutledge DN, Leardi R. A multiway chemometric and kinetic study for evaluating the thermal stability of edible oils by 1H NMR analysis: comparison of methods. Talanta. 2012;88:358–68.

    Article  CAS  Google Scholar 

  22. Dugo G, Rotondo A, Mallamace D, Cicero N, Salvo A, Rotondo E, Corsaro C. Enhanced detection of aldehydes in extra-virgin olive oil by means of band selective NMR spectroscopy. Phys A Stat Mech Appl. 2015;420:258–64.

    Article  CAS  Google Scholar 

  23. Guillén MD, Uriarte PS. Study by 1H NMR spectroscopy of the evolution of extra virgin olive oil composition submitted to frying temperature in an industrial fryer for a prolonged period of time. Food Chem. 2012;134(1):162–72.

    Article  Google Scholar 

  24. Siciliano C, Belsito E, De Marco R, Di Gioia ML, Leggio A, Liguori A. Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1H NMR spectroscopy. Food Chem. 2013;136(2):546–54.

    Article  CAS  Google Scholar 

  25. Anese M, Sovrano S. Kinetics of thermal inactivation of tomato lipoxygenase. Food Chem. 2006;95:131–7.

    Article  CAS  Google Scholar 

  26. Moore DS. The basic practice of statistics. 4th ed. New York: W. H. Freeman and Company; 2007.

    Google Scholar 

  27. Litwinienko G, Kasprzycka-Guttman T. A DSC study on thermoxidation kinetics of mustard oil. Thermochim Acta. 1998;319:185–91.

    Article  CAS  Google Scholar 

  28. Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Rocha Filho GN, Da Costa CEF. Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresour Technol. 2011;102(10):5873–7.

    Article  CAS  Google Scholar 

  29. Cibulková Z, Čertík M, Dubaj T. Thermooxidative stability of poppy seeds studied by non-isothermal DSC measurements. Food Chem. 2014;150:296.

    Article  Google Scholar 

  30. Souza AL, Martínez FP, Ferreira SB, Kaizer CR. A complete evaluation of thermal and oxidative stability of chia oil. J Therm Anal Calorim. 2017. doi:10.1007/s10973-017-6106-x.

    Google Scholar 

  31. López-Beceiro J, Artiaga R, Gracia C, Tarrío-Saavedra J, Naya S, Mier JL. Comparison of olive, corn, soybean and sunflower oils by PDSC. J Therm Anal Calorim. 2011;104:169–75.

    Article  Google Scholar 

  32. Dubaj T, Simon P. Validation of the estimation of oxidation induction time from non-isothermal DSC measurements. J Therm Anal Calorim. 2014;118:919–23.

    Article  CAS  Google Scholar 

  33. Rodriguez G, Villanueva E, Glorio P, Baquerizo M. Estabilidad oxidativa y estimación de la vida útil del aceite de Sacha Inchi (Plukenetia volubilis L.). Sci Agropecu. 2015;6(3):155–63.

    Article  Google Scholar 

  34. Goetz J, Koehler P. Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR. LWT Food Sci Technol. 2005;38:501–12.

    Article  CAS  Google Scholar 

  35. Lam RSH, Nickerson MT. Food proteins: a review on their emulsifying properties using a structure–function approach. Food Chem. 2013;141(2):975–84.

    Article  CAS  Google Scholar 

  36. Oliver CM, Melton LD, Stanley RA. Creating proteins with novel functionality via the Maillard reaction: a review. Crit Rev Food Sci Nutr. 2006;46:337–50.

    Article  CAS  Google Scholar 

  37. Damodaran S. Aminoácidos, Peptídeos e Proteínas. In: Damodaran S, Parkin KL, Fennema OR, editors. Fennema´s food chemistry. Boca Raton: CRC Press; 2007. p. 179–260.

    Google Scholar 

  38. Adhvaryu A, Erhan S, Liu Z, Perez J. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochem Acta. 2000;364:87–97.

    Article  CAS  Google Scholar 

  39. Pereira AFC, Pontes MJC, Neto FFG, Santos SRB, Galvão RKH, Araújo MCU. NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection. Food Res Int. 2008;41(4):341–8.

    Article  CAS  Google Scholar 

  40. Guillén MD, Goicoechea E. Oxidation of corn oil at room temperature: primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data. Food Chem. 2009;116(1):183–92.

    Article  Google Scholar 

  41. Erkan N, Ayranci G, Ayranci E. A kinetic study of oxidation development in sunflower oil under microwave heating: effect of natural antioxidants. Food Res Int. 2009;42:1171–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Brazilian agencies CNPq and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Elard Garcia-Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, J., Cappato, L.P., de Araújo Calado, V.M. et al. Thermal and oxidative stability of Sacha Inchi oil and capsules formed with biopolymers analyzed by DSC and 1H NMR. J Therm Anal Calorim 131, 2093–2104 (2018). https://doi.org/10.1007/s10973-017-6759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6759-5

Keywords

Navigation