Skip to main content
Log in

The study of modified zirconium catalysts for selective dehydration of propan-2-ol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

X-ray amorphous precipitated zirconium hydrophosphate ZrP has been subjected to hydrothermal, microwave and mechanochemical modification. Modified samples have been studied using XRD, FTIR spectroscopy, adsorption–desorption of nitrogen, temperature-programmed desorption of ammonia and pyridine adsorption. They possess higher surface area and more developed and accessible pore structure compared with unmodified ZrP. They also have higher concentration of acid sites. The latter are predominantly represented by weak and strong centers. Modified samples also are more active in the process of propan-2-ol dehydration compared with initial ZrP: The temperature of propan-2-ol total conversion reduces from 295 to 193–199 °C. This temperature depends on total pore volume, pore size and total acidity of ZrP samples. Catalysts possessing mesopores size ≥ 4 nm, total pore volume > 0.4 cm3 g−1 and total acidity > 0.4 mmol g−1 exhibit maximal activity. The modified ZrP catalysts are not only efficient but also recyclable since can be used at least three times without decline in the catalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clearfield A, Costantino U. Comprehensive supramolecular chemistry. Amsterdam: Elsevier; 1996.

    Google Scholar 

  2. Corma A. Solid acid catalysts. Curr Opin Solid State Mater Sci. 1997;2:63–75.

    Article  CAS  Google Scholar 

  3. Mendes LC, Silva DF, Araujo LJF, Lino AS. Zirconium phosphate organically intercalated/exfoliated with long chain amine. J Therm Anal Calorim. 2014;118:1461–9.

    Article  CAS  Google Scholar 

  4. Bogdanov SG, Valiev EZ, Dorofeev YA, Pirogov AN, Sharygin LM, Moiseev EN, Galkin VM. Structure of zirconium phosphate gels produced by the sol–gel method. J Phys Condens Matter. 1997;9:4031–9.

    Article  CAS  Google Scholar 

  5. Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, Charmas B, Skwarek E, Janusz W. Hydrothermal, microwave and mechanochemical modification of amorphous zirconium phosphate structure. J Therm Anal Calorim. 2017;128:795–806.

    Article  CAS  Google Scholar 

  6. Tanabe K, Misono M, Hattori H, Ono Y. New solid acids and bases: their catalytic properties. Amsterdam: Elsevier; 1989.

    Google Scholar 

  7. Clearfield A, Thakur DS. Zirconium and titanium phosphates as catalysts: a review. Appl Catal. 1986;26:1–26.

    Article  CAS  Google Scholar 

  8. Guerrero-Ruiz A, Rodriguez-Ramos I, Fierro JLG, López AJ, Pastor PO, Torres PM. Catalytic activity of layered α- (tin or zirconium) phosphates and chromia-pillared derivatives for isopropyl alcohol decomposition. Appl Catal A Gen. 1992;92:81–92.

    Article  CAS  Google Scholar 

  9. Liu Q, He H, Chao ZS, Xie J, Ruchenstein E. Synthesis of mesoporous chromium phosphates via solid-state reaction at low temperature. New J Chem. 2012;36:139–47.

    Article  CAS  Google Scholar 

  10. Perego C, Millini R. Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev. 2013;42:3956–76.

    Article  CAS  Google Scholar 

  11. Fernandes VJ, Araujo AS, Fernandes GJT. Thermal analysis applied to solid catalysts acidity, activity and regeneration. J Therm Anal Calorim. 1999;56:275–85.

    Article  CAS  Google Scholar 

  12. Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catal Today. 1998;41:207–19.

    Article  CAS  Google Scholar 

  13. Turco M, Ciambelli P, Bagnasco G, Ginestra AL, Galli P, Ferragina C. TPD study of NH3 adsorbed by different phases of zirconium phosphate. J Catal. 1989;117:355–61.

    Article  CAS  Google Scholar 

  14. Senchylo EV, Struzhko VL, Solomakha VN. Effect of synthesis conditions on formation of thermally stable mesoporous zirconium phosphate. Theor Exp Chem. 2014;50:257–64.

    Article  CAS  Google Scholar 

  15. Cao D, Yu B, Zhang S, Cui L, Zhang J, Cai W. Isosorbide production from sorbitol over porous zirconium phosphatecatalyst. Appl Catal A Gen. 2016;528:59–66.

    Article  CAS  Google Scholar 

  16. Niwa M, Katada N. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a Review. Chem Rec. 2013;13:432–55.

    Article  CAS  Google Scholar 

  17. Emeis CA. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal. 1993;141:347–54.

    Article  CAS  Google Scholar 

  18. Diyuk VE, Mariychuk RT, Lisnyak VV. Functionalization of activated carbon surface with sulfonated styrene as a facile route for solid acids preparation. Mater Chem Phys. 2016;184:138–45.

    Article  CAS  Google Scholar 

  19. Bedia J, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T. A kinetic study of 2-propanol dehydration on carbon acid catalysts. J Catal. 2010;271:33–42.

    Article  CAS  Google Scholar 

  20. Vidruk R, Landau MV, Herskowitz M, Ezersky V, Goldbourt A. Control of surface acidity and catalytic activity of γ-Al2O3 by adjusting the nanocrystalline contact interface. J Catal. 2011;282:215–27.

    Article  CAS  Google Scholar 

  21. Fulvioa PF, Mayesa RT, Bauera JC, Wanga X, Mahurina SM, Veith GM, Dai S. “One-pot” synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catal Today. 2012;186:12–9.

    Article  Google Scholar 

  22. Pizzio LR, Cáceres CV, Blanco MN. Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports. Appl Catal A Gen. 1998;167:283–94.

    Article  CAS  Google Scholar 

  23. Bedia J, Rosas JM, Vera D, Rodríguez-Mirasol J, Cordero T. Isopropanol decomposition on carbon based acid and basic catalysts. Catal Today. 2010;158:89–96.

    Article  CAS  Google Scholar 

  24. Zeng Y, Fan C, Do DD, Nicholson D. Evaporation from an ink-bottle pore: mechanisms of adsorption and desorption. Ind Eng Chem Res. 2014;53:15467–74.

    Article  CAS  Google Scholar 

  25. Gheorghiu S, Coppens MO. Optimal bimodal pore networks for heterogeneous catalysis. Am Inst Chem Eng J. 2004;50:812–20.

    Article  CAS  Google Scholar 

  26. Choi Y, Yun YS, Park H, Park DS, Yun D, Yi J. A facile approach for the preparation of tunable acid nano-catalysts with a hierarchically mesoporous structure. Chem Commun. 2014;50:7652–5.

    Article  CAS  Google Scholar 

  27. Restivo TAG, Mello-Castanho SRH, Tenorio JA. TG/DTA-MS evaluation of methane cracking and coking on doped nickel–zirconia based cermets. J Therm Anal Calorim. 2014;118:75–81.

    Article  CAS  Google Scholar 

  28. de Souza G, Marcilio NR, Perez-Lopez OW. Influence of the Ni/Al ratio on Ni–Al mixed oxides and their catalytic properties for ethanol decomposition. J Therm Anal Calorim. 2017;128:735–44.

    Article  Google Scholar 

  29. Ahmed R, Sinnathambi CM, Subbarao D. Kinetics of de-coking of spent reforming catalyst. J Appl Sci. 2011;2011(11):1225–30.

    Google Scholar 

  30. Argyle MD, Bartholomew CH. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts. 2015;5:145–269.

    Article  CAS  Google Scholar 

  31. Hansen TW, Delariva AT, Challa SR, Datye AK. Sintering of catalytic nanoparticles: particle migration or ostwald ripening? Acc Chem Res. 2013;46:1720–30.

    Article  CAS  Google Scholar 

  32. Slade RCT, Knowles JA, Jones DJ, Rozière J. The isomorphous acid salts α-Zr(HPO4)2 H2O, α-Ti(HPO4)2 H2O and α-Zr(HAsO4)2 H2O. Comparative thermochemistry and vibrational spectroscopy. Solid State Ionics. 1997;96:9–19.

    Article  CAS  Google Scholar 

  33. Horsley SE, Nowell DV, Stewart DT. The infrared and Raman spectra of α-zirconium phosphate. Spectrochim Acta. 1974;30A:535–41.

    Article  CAS  Google Scholar 

  34. Gu M, Yu D, Zhang H, Sun P, Huang H. Metal (IV) phosphates as solid catalysts for selective dehydration of sorbitol to isosorbide. Catal Lett. 2009;133:214–20.

    Article  CAS  Google Scholar 

  35. Nikitina MA, Ivanova II. Conversion of 2,3-butanediol over phosphate catalysts. Chem Cat Chem. 2016;8:1346–53.

    CAS  Google Scholar 

  36. Busca G. The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys. 1999;1:723–36.

    Article  CAS  Google Scholar 

  37. Jiménez-Jiménez J, Maireles-Torres P, Olivera-Pastor P, Rodríguez-Castellón E, Jiménez-López A, Jones DJ, Rozire J. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties. Adv Mater. 1998;10:812–5.

    Article  Google Scholar 

  38. Diyuk VE, Zaderko AN, Grishchenko LM, Yatsymyrskiy AV, Lisnyak VV. Efficient carbon-based acid catalysts for the propan-2-ol dehydration. Catal Commun. 2012;27:33–7.

    Article  CAS  Google Scholar 

  39. Jiménez-Jiménez J, Maireles-Torres P, Olivera-Pastor P, Rodríguez-Castellón E, Jiménez-López A. Sol-gel synthesis of dodecyltrimethylammonium-expanded zirconium phosphate and its application to the preparation of acidic porous oligomeric gallium(III)-exchanged materials. Langmuir. 1997;13:2857–62.

    Article  Google Scholar 

  40. Thomas JM, Thomas WJ. Principles and practice of heterogeneous catalysis. Hoboken: Wiley; 2015.

    Google Scholar 

  41. Choi Y, Park H, Yun YS, Yi J. Effects of catalyst pore structure and acid properties on the dehydration of glycerol. Chem Sus Chem Commun. 2015;8:974–9.

    Article  CAS  Google Scholar 

  42. Shao P, Huang RYM. Polymeric membrane pervaporation. J Membr Sci. 2007;287:162–79.

    Article  CAS  Google Scholar 

  43. Van der Bruggen B, Schaep J, Wilms D, Vandecasteele C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Membr Sci. 1999;156:29–41.

    Article  Google Scholar 

  44. Borjigin T, Sun F, Zhang J, Cai K, Ren H, Zhu G. A microporous metal–organic framework with high stability for GC separation of alcohols from water. Chem Commun. 2012;48:7613–5.

    Article  CAS  Google Scholar 

  45. Moeini V, Deilam M. Determination of molecular diameter by PVT. ISRN Phys Chem. 2012;. doi:10.5402/2012/521827.

    Google Scholar 

  46. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK. Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem. 1994;66:1739–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khalameida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalameida, S., Diyuk, V., Zaderko, A. et al. The study of modified zirconium catalysts for selective dehydration of propan-2-ol. J Therm Anal Calorim 131, 2361–2371 (2018). https://doi.org/10.1007/s10973-017-6733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6733-2

Keywords

Navigation