Skip to main content
Log in

An experimental study on rheological behavior of SAE50 engine oil

Effects of temperature and hybrid nano-materials composed of 20 vol% MWCNTs and 80 vol% TiO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the rheological behavior of the MWCNTs-TiO2/SAE50 hybrid nano-lubricant in solid volume fractions ranging from 0.03125 to 1% and temperatures ranging from 25 to 50 °C has been examined. Samples were prepared by a two-step method and CAP2000+ viscometer was used to measure the viscosity of nano-lubricant samples at different shear rates. Applying curve fitting method on the shear stress–shear rate dependency, consistency and power law index were obtained. In addition, a new correlation has been proposed to predict the consistency of the nano-lubricant as a function of temperature and solid volume fraction. Results revealed that all samples showed Newtonian behavior at all temperatures considered. Moreover, a comparison was performed between present findings and nano-lubricant. It showed that the viscosity of the present nano-lubricant was lower than that of MWCNTs-MgO/SAE50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non Newton Flows. 1995;231:99–105.

    CAS  Google Scholar 

  2. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  3. Afrand M, Ahmadi Nadooshan A, Hassani M, Yarmand H, Dahari M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data. Int Commun Heat Mass Transf. 2016;77:49–53.

    Article  CAS  Google Scholar 

  4. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

  5. Hemmat Esfe M, Abbasian Arani AA, Yan W-M, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube-EG-water nanofluid. Int J of Heat Mass Transf. 2016;92:76–82.

    Article  CAS  Google Scholar 

  6. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126:1455–62.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, Akbari M. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2-EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50.

    Article  CAS  Google Scholar 

  8. Ahmadi Nadooshan A, Esfe MH, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E. 2017;92:47–54.

    Article  CAS  Google Scholar 

  9. Ahmadi Nadooshan A. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Phys E. 2017;87:15–9.

    Article  CAS  Google Scholar 

  10. Sina N, Moosavi H, Aghaei H, Afrand M, Wongwises S. Wave dispersion of carbon nanotubes conveying fluid Supported on linear viscoelastic two-parameter foundation including thermal and small-scale effects. Phys E. 2017;85:109–16.

    Article  CAS  Google Scholar 

  11. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.

    Article  CAS  Google Scholar 

  12. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys E. 2017;85:90–6.

    Article  CAS  Google Scholar 

  13. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Thermal Fluid Sci. 2009;33:706–14.

    Article  CAS  Google Scholar 

  14. Sahoo BC, Vajjha RS, Ganguli R, Chukwu GA, Das DK. Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations. Pet Sci Technol. 2009;27:1757–70.

    Article  CAS  Google Scholar 

  15. Kole M, Dey T. Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Thermal Fluid Sci. 2010;34:677–83.

    Article  CAS  Google Scholar 

  16. Bobbo S, Fedele L, Benetti A, Colla L, Fabrizio M, Pagura C, Barison S. Viscosity of water based SWCNH and TiO2 nanofluids. Exp Thermal Fluid Sci. 2012;36:65–71.

    Article  CAS  Google Scholar 

  17. Sundar LS, Ramana EV, Singh M, De Sousa A. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett. 2012;554:236–42.

    Article  Google Scholar 

  18. Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.

    Article  CAS  Google Scholar 

  19. Esfe MH, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Thermal Fluid Sci. 2014;52:68–78.

    Article  Google Scholar 

  20. Esfe MH, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions. Exp Thermal Fluid Sci. 2014;55:1–5.

    Article  Google Scholar 

  21. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.

    Article  Google Scholar 

  22. Esfe MH, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94.

    Article  CAS  Google Scholar 

  23. Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transf. 2016;74:108–13.

    Article  CAS  Google Scholar 

  24. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Thermal Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  25. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Thermal Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  26. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Thermal Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  27. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  28. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  29. Vakili-Nezhaad GR, Dorany A. Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts. Chem Eng Commun. 2009;196:997–1007.

    Article  CAS  Google Scholar 

  30. Afrand M, Nazari Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  31. Chen L, Xie H, Yu W, Li Y. Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J Dispers Sci Technol. 2011;32:550–4.

    Article  CAS  Google Scholar 

  32. Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Thermal Fluid Sci. 2017;80:384–90.

    Article  CAS  Google Scholar 

  33. Ettefaghi E-o-L, Rashidi A, Ahmadi H, Mohtasebi SS, Pourkhalil M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int Commun Heat Mass Transf. 2013;48:178–82.

    Article  CAS  Google Scholar 

  34. Hemmat Esfe M, Afrand M, Gharehkhani S, Rostamian H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8.

    Article  CAS  Google Scholar 

  35. Asadi M, Asadi M, Rezaei M, Siahmargoi F. Asadi, The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int Commun Heat Mass Transf. 2016;78:48–53.

    Article  CAS  Google Scholar 

  36. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transf. 2016;76:41–5.

    Article  CAS  Google Scholar 

  37. Hemmat Esfe M, Bahiraei M, Hajmohammad MH, Afrand M. Rheological characteristics of MgO/oil nanolubricants: experimental study and neural network modeling. Int Commun Heat Mass Transf. 2017;86:245–52.

    Article  CAS  Google Scholar 

  38. Dardan E, Afrand M, Meghdadi Isfahani AH. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  39. Sepyani K, Afrand M, Esfe MH. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204.

    Article  CAS  Google Scholar 

  40. Hojjat M, Etemad SG, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38:144–8.

    Article  CAS  Google Scholar 

  41. Yasar F, Togrul H, Arslan N. Flow properties of cellulose and carboxymethyl cellulose from orange peel. J Food Eng. 2007;81:187–99.

    Article  CAS  Google Scholar 

  42. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.

    Article  CAS  Google Scholar 

  43. Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14.

    Article  CAS  Google Scholar 

  44. Safaei MR, Safdari Shadloo M, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8:168781401667356

    Article  Google Scholar 

  45. Dehkordi RA, Esfe MH, Afrand M. Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: An experimental study on thermal conductivity. Appl Thermal Eng. 2017;120:358–66.

    Article  Google Scholar 

  46. Afrand M, Esfe MH, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys E. 2017;87:242–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Firouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shababi, K., Firouzi, M. & Fakhar, A. An experimental study on rheological behavior of SAE50 engine oil. J Therm Anal Calorim 131, 2311–2320 (2018). https://doi.org/10.1007/s10973-017-6693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6693-6

Keywords

Navigation