Skip to main content
Log in

The influence of thermal oxidative ageing on flame retardancy, thermal and mechanical properties of LGFPP/IFR composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the composites based on long glass fibre reinforced polypropylene/intumescent flame retardant (LGFPP/IFR) were prepared by melt blending. The influence of thermal oxidative ageing on the LGFPP/IFR composites with different thermal oxidative ageing time at 140 °C was studied by means of oven heating. The thermal stability and flammability of the composites were respectively investigated by thermal gravimetric analysis (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), scanning electronic microscopy (SEM), mechanical properties test and energy-dispersive X-ray analysis (EDAX). A trend of increase first and then decrease in LOI values was shown in 0–50 days ageing, with the same trend as thermal stability obtained from TG in nitrogen condition. The CCT results indicated that the LGFPP/IFR composites after ageing achieved a higher heat release rate, which means a higher fire risk. The mechanical properties showed a global decrease in just 10 days ageing. Morphologies obtained from SEM showed that both the rupture of PP matrix and fibre interface debonding led to the decrease in mechanical properties. The EDAX proved that IFR particles could emerge and gather on the surface of sample in ageing procedure, which had great effects on the thermal stability and flame retardancy of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang R, Wu L, Niu S, Ma J. Thermal-oxidative ageing kinetics of montmorillonite/polypropylene nanocomposites. Acta Mater Compos Sin. 2010;27(6):70–5.

    CAS  Google Scholar 

  2. Nasir A, Yasin T, Islam A. Thermo-oxidative degradation behavior of recycled polypropylene. J Appl Polym Sci. 2011;119(6):3315–20.

    Article  CAS  Google Scholar 

  3. Thomason JL. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos A Appl Sci Manuf. 2002;33(12):1641–52.

    Article  Google Scholar 

  4. Xian G, Yi X, Lu X, Hu Y. Tensile properties of injection molded long glass fiber reinforced polypropylene parts. Acta Mater Compos Sin. 2001;18(2):41–5.

    CAS  Google Scholar 

  5. Han Y, Xu Y, Liu Y, Wang Q, Zhang Z, Wang Z. An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyamide 6 with high performance. J Mater Chem A. 2013;1(35):10228–33.

    Article  CAS  Google Scholar 

  6. Liu Y, Deng C, Zhao J, Wang J, Chen L, Wang Y. An efficiently halogen-free flame retardant long glass fiber reinforced polypropylene system. Polym Degrad Stab. 2011;96(3):363–70.

    Article  CAS  Google Scholar 

  7. Zhang Z, Lin B, Zhou N, Yu F, Hongbin Z. Flame-retardant olefin block copolymer composites with novel halogen-free intumescent flame retardants based on the composition of melamine phosphate and pentaerythritol. J Appl Polym Sci. 2014;131(7):2540.

    Google Scholar 

  8. Levchik SV, Levchik GF, Balabanovich AI, Camino G, Luigi C. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants. Polym Degrad Stab. 1996;54(2–3):217–22.

    Article  CAS  Google Scholar 

  9. Gavgani JN, Adelnia H, Mir-Mohamad-Sadeghi G, Zafari F. Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. J Appl Polym Sci. 2014;131(23):243–54.

    Article  Google Scholar 

  10. Enescu D, Frache A, Lavaselli M, Monticelli O, Marino F. Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym Degrad Stab. 2013;98(1):297–305.

    Article  CAS  Google Scholar 

  11. Wang X, Feng N, Chang S, Zhang G, Li H, Lu H. Intumescent flame retardant TPO composites: flame retardant properties and morphology of the charred layer. J Appl Polym Sci. 2012;124(3):2071–9.

    Article  CAS  Google Scholar 

  12. Troeger C, Bens AT, Bermes G, Klemmer R, Lenz J, Irsen S. Ageing of acrylate-based resins for stereolithography: thermal and humidity ageing behaviour studies. Rapid Prototyp J. 2008;14(5):305–17.

    Article  Google Scholar 

  13. Li J, Yang R, Yu J, Liu Y. Deterioration of polypropylene/silicon dioxide nanocomposites before oxidative degradation. J Appl Polym Sci. 2009;113(1):601–6.

    Article  CAS  Google Scholar 

  14. Fei Z, Zhong M, Yang J. Study on thermal oxidative property of PP modified by inorganic nano-meter particle. China Plast Ind. 2006;34(10):42–4.

    CAS  Google Scholar 

  15. Pandey JK, Reddy KR, Kumar AP, Singh RP. An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 2005;88(2):234–50.

    Article  CAS  Google Scholar 

  16. Kalali EN, De Juan S, Wang X, Nie S, Wang R, Wang D. Comparative study on synergistic effect of LDH and zirconium phosphate with aluminum trihydroxide on flame retardancy of EVA composites. J Therm Anal Calorim. 2015;121(1):619–26.

    Article  CAS  Google Scholar 

  17. Zhang X, Zhang F. Study on application of novel P-N intumescent flame retardant in polypropylene. China Plast. 2012;26(4):92–6.

    Google Scholar 

  18. Zuo X, Shao H, Zhang D, Hao Z, Guo J. Effects of thermal-oxidative ageing on the flammability and thermal oxidative degradation kinetics of tris(tribromophenyl) cyanurate flame retardant PA6/LGF composites. Polym Degrad Stab. 2013;98(12):2774–83.

    Article  CAS  Google Scholar 

  19. Zhang J, Wang X, Zhang F, Horrocks AR. Estimation of heat release rate for polymer-filler composites by cone calorimetry. Polym Test. 2004;23(2):225–30.

    Article  CAS  Google Scholar 

  20. Tang M, Qi F, Chen M, Sun Z, Xu Y, Chen X, Zhang Z, Shen R. Synergistic effects of ammonium polyphosphate and red phosphorus with expandable graphite on HDPE/EVA blends. Polym Adv Technol. 2016;27(1):52–60.

    Article  CAS  Google Scholar 

  21. Tang M, Chen M, Xu Y, Chen X, Sun Z, Zhang Z. Combustion characteristics and synergistic effects of red phosphorus masterbatch with expandable graphite in the flame retardant HDPE/EVA composites. Polym Eng Sci. 2015;55(12):2884–92.

    Article  CAS  Google Scholar 

  22. Zhang J, Silcock G, Shields TJ. Study of the combustion and fire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry. J Fire Sci. 1995;13(2):141–61.

    Article  CAS  Google Scholar 

  23. Zhang F, Zhang J, Sun D. Study on thermal decomposition of intumescent fire-retardant polypropylene by TG/Fourier transform infrared. J Thermoplast Compos Mater. 2009;22(6):681–701.

    Article  CAS  Google Scholar 

  24. Diagen M, Gueye M, Vidal L, Tidjani A. Thermal stability and fire retardant performance of photo-oxidized nanocomposites of polypropylene-graft-maleic anhydride/clay. Polym Degrad Stab. 2005;89(3):418–26.

    Article  Google Scholar 

  25. Palacios J, Perera R, Rosales C, Albano C, Pastor JM. Thermal degradation kinetics of PP/OMMT nanocomposites with mPE and EVA. Polym Degrad Stab. 2012;97(5):729–37.

    Article  CAS  Google Scholar 

  26. Han K, Liu Z, Yu M. Preparation and mechanical properties of long glass fiber reinforced PA6 composites prepared by a novel process. Macromol Mater Eng. 2005;290(7):688–94.

    Article  CAS  Google Scholar 

  27. Kennedy MT, Cuellar E, Roberts DR. Stress-free ageing of optical fibers in liquid water and humid environments: part 1. Fiber Optic Compon Reliab. 1992;15801(1):152–62.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Guizhou Province Science and Technology Fund (2015/7096), Special Funds of Guizhou Province Outstanding Young Scientists (2015/26), the National Natural Science Foundation of China (51763002 and 51003088) and High-level Innovative Talents Training Project of Guizhou Province (2015/4039, 2016/5667).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolang Chen or Jianbing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Qi, F., Wang, N. et al. The influence of thermal oxidative ageing on flame retardancy, thermal and mechanical properties of LGFPP/IFR composites. J Therm Anal Calorim 131, 1017–1024 (2018). https://doi.org/10.1007/s10973-017-6679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6679-4

Keywords

Navigation