Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 2, pp 1757–1766 | Cite as

Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid

  • Davood Toghraie
  • Mohammad Mehdi Davood Abdollah
  • Farzad Pourfattah
  • Omid Ali Akbari
  • Behrooz Ruhani
Article

Abstract

Flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid have been investigated by finite volume method. Effects of amplitude and wave length of sinusoidal and zigzag-shaped microchannel, volume of fraction and Reynolds number on heat transfer, performance evaluation criterion were evaluated. The results show that by increasing volume fraction of Copper oxide nanoparticle, Nusselt numbers are increased. Obtained results show that if only the increase in heat transfer is considered, using sinusoidal microchannels without nanoparticles is more effective method than using of nanoparticles in smooth microchannels. By analyzing the effect of wavelength and amplitude on changes of Nusselt number, it can be found that by decreasing sinusoidal and zigzag-shaped microchannel wavelengths, Nusselt number will increase. Also, we concluded that for selection of the best microchannel, the zigzag shaped one is a more appropriate one as compared to the sinusoidal microchannel.

Keywords

Nanofluid Zigzag Sinusoidal Heat transfer coefficient Performance evaluation criterion 

References

  1. 1.
    Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, Sartipzadeh O. Experimental study on cooling performance of sinusoidal–wavy minichannel heat sink. Appl Therm Eng. 2016;92:50–61.CrossRefGoogle Scholar
  2. 2.
    Ma DD, Xia GD, Li YF. Effects of structural parameters on fluid flow and heat transfer characteristics in microchannel with offset zig-zag grooves in side wall. Int J Heat Mass Transf. 2016;101:427–35.CrossRefGoogle Scholar
  3. 3.
    Mathew B, John TJ, Hegab H. Dynamics of fluid flow in a heated zig-zag square microchannel. In: 10th AIAA/ASME joint thermophysics and heat transfer conference. Chicago, Illinois, 28 June–1 July, 2010.Google Scholar
  4. 4.
    Nuntadusit C, Piya I, Wae-hayee M, Eiamsa-ard S. Heat transfer characteristics in a channel fitted with zig-zag-cut baffles. J Mech Sci Technol. 2015;29:2547–54.CrossRefGoogle Scholar
  5. 5.
    Lee SM, Kim KY. Comparative study on performance of a zig-zag printed circuit heat exchanger with various channel shapes and configurations. Heat Mass Transf. 2013;49:1021–8.CrossRefGoogle Scholar
  6. 6.
    Sakanova A, Keian CC, Zhao J. Performance improvements of microchannel heat sink using wavy channel and nanofluids. Int J Heat Mass Transf. 2015;89:59–74.CrossRefGoogle Scholar
  7. 7.
    Afshari E, Ziaei-Rad M, Mosharaf Dehkordi M. Numerical investigation on a novel zig-zag shape d flow channel design for cooling plates of PEM fuel cells. J Energy Inst. 2016;. doi: 10.1016/j.joei.2016.07.002.Google Scholar
  8. 8.
    Sheremet DA, Pop I, Öztop HF, Abu-Hamdeh N. Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater. J Hydrodyn. 2016;28(5):873–85.CrossRefGoogle Scholar
  9. 9.
    Li P, Chen J, Qu H, Xie Y, Zhang D. Flow and heat transfer enhancement of nanofluids in microchannel with blocks and grooves. In: ASME 2013 fluids engineering division summer meeting, vol 1B. Fundamental issues and perspectives in fluid mechanics incline village, Nevada, USA, July 7–11, 2013.Google Scholar
  10. 10.
    Om NI, Gunnasegaran P, Rajasegaran S. Influence of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink. IOP Conf Ser Earth Environ Sci. 2013;16:012075.CrossRefGoogle Scholar
  11. 11.
    Olayiwola B, Schaldach G, Walzel P. CFD simulations of flow and heat transfer in a zig-zag channel with flow pulsation. In: ASME 2010 international mechanical engineering congress and exposition vol 7: fluid flow, heat transfer and thermal systems. 2010; parts A and B Vancouver, British Columbia, Canada, November 12–18, 2010.Google Scholar
  12. 12.
    Siw SC, Chyu MK, Alvin MA. Heat transfer and pressure loss characteristics of zig-zag channel with rib-turbulators. In: ASME turbo expo 2013: turbine technical conference and exposition vol 3A: heat transfer. San Antonio, Texas, USA. 2013; conference sponsors: International Gas Turbine Institute.Google Scholar
  13. 13.
    Sharipova F, Graur IA. Rarefied gas flow through a zig-zag channel, Vacuum Gas Dynamics: Theory. experiments and practical applications. 2012; 86: 1778–1782.Google Scholar
  14. 14.
    Chein R, Chuang J. Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci. 2007;46:57–66.CrossRefGoogle Scholar
  15. 15.
    Mital M. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels. Appl Therm Eng. 2013;50:429–36.CrossRefGoogle Scholar
  16. 16.
    Moraveji A, Toghraie D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. Int J Heat Mass Transf. 2017;2017(113):432–43.CrossRefGoogle Scholar
  17. 17.
    Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E Low Dimens Syst Nanostruct. 2017;93:179–89.CrossRefGoogle Scholar
  18. 18.
    Keshavarz E, Toghraie D, Haratian M. Modeling industrial scale reaction furnace using computational fluid dynamics: a case study in Ilam gas treating plant. Appl Therm Eng. 2017;123:277–89.CrossRefGoogle Scholar
  19. 19.
    Mirkalantari SA, Hashemian M, Eftekhari SA, Toghraie D. Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects. Physica B Condens Matter. 2017;519:1–14.CrossRefGoogle Scholar
  20. 20.
    Tohidi M, Toghraie D. The effect of geometrical parameters, roughness and the number of nanoparticles on the self-diffusion coefficient in Couette flow in a nanochannel by using of molecular dynamics simulation. Physica B Condens Matter. 2017;518:20–32.CrossRefGoogle Scholar
  21. 21.
    Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;236:254–65.CrossRefGoogle Scholar
  22. 22.
    Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E Low Dimens Syst Nanostruct. 2017;93:167–78.CrossRefGoogle Scholar
  23. 23.
    Saffari S, Hashemian M, Toghraie D. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects. Physica B Condens Matter. 2017;. doi: 10.1016/j.physb.2017.06.029.Google Scholar
  24. 24.
    Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50.CrossRefGoogle Scholar
  25. 25.
    Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water-ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq. 2017;232:105–12.CrossRefGoogle Scholar
  26. 26.
    Oveissi S, Toghraie D, Eftekhari SA. Analysis of transverse vibrational response and instabilities of axially moving cnt conveying fluid. Int J Fluid Mech Res. 2017;44:115–29.CrossRefGoogle Scholar
  27. 27.
    Farzinpour M, Rasouli S, Toghraie D. Experimental and numerical investigations of bubbling fluidized bed apparatus to investigate heat transfer coefficient for different fins. Comput Therm Sci Int J. 2017;9:243–55.CrossRefGoogle Scholar
  28. 28.
    Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;. doi: 10.1007/s10973-017-6213-8.Google Scholar
  29. 29.
    Oveissi S, Eftekhari SA, Toghraie D. Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure. Physica E Low Dimens Syst Nanostruct. 2016;83:164–73.CrossRefGoogle Scholar
  30. 30.
    Oveissi S, Toghraie D, Eftekhari SA. Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid. Physica E Low Dimens Syst Nanostruct. 2016;83:275–83.CrossRefGoogle Scholar
  31. 31.
    Ahmadi GR, Toghraie D. Energy and exergy analysis of Montazeri steam power plant in Iran. Renew Sustain Energy Rev. 2016;56:454–63.CrossRefGoogle Scholar
  32. 32.
    Rezaei M, Azimian AR, Toghraie D. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat Mass Transf. 2015;51:661–70.CrossRefGoogle Scholar
  33. 33.
    Rezaei M, Azimian AR, Toghraie D. Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer. Physica A Stat Mech Appl. 2015;426:25–34.CrossRefGoogle Scholar
  34. 34.
    Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.CrossRefGoogle Scholar
  35. 35.
    Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–Water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.CrossRefGoogle Scholar
  36. 36.
    Esfe MH, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.CrossRefGoogle Scholar
  37. 37.
    Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of Copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A Stat Mech Appl. 2014;402:150–68.CrossRefGoogle Scholar
  38. 38.
    Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:2016.CrossRefGoogle Scholar
  39. 39.
    Esfe MH, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2 O3/Water (40%)–ethylene-glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.CrossRefGoogle Scholar
  40. 40.
    Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.CrossRefGoogle Scholar
  41. 41.
    Semiromi DT, Azimian AR. Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf. 2012;48:141–52.CrossRefGoogle Scholar
  42. 42.
    Toghraie D, Alempour SMB, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.CrossRefGoogle Scholar
  43. 43.
    Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.CrossRefGoogle Scholar
  44. 44.
    Esfe MH, Afrand M, Gharehkhani S, Rostamiand H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8.CrossRefGoogle Scholar
  45. 45.
    Esfe MH, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.CrossRefGoogle Scholar
  46. 46.
    Esfe MH, Hassani A, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.CrossRefGoogle Scholar
  47. 47.
    Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.CrossRefGoogle Scholar
  48. 48.
    Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7:1550052.CrossRefGoogle Scholar
  49. 49.
    Noorian H, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50:105–13.CrossRefGoogle Scholar
  50. 50.
    Karimipour A, Alipour H, Akbari OA, Semiromi DT, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian J Sci Technol. 2016;8:2015.Google Scholar
  51. 51.
    Akbari OA, Karimipour A, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of Water-Aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2016;7:1–11.Google Scholar
  52. 52.
    Akbari OA, Karimipour A, Toghraie D, Safaei MR, Alipour M, Goodarzi H, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comput. 2016;290:135–53.Google Scholar
  53. 53.
    Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of Water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8:1–25.CrossRefGoogle Scholar
  54. 54.
    Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E Low Dimens Syst Nanostruct. 2016;88:60–76.CrossRefGoogle Scholar
  55. 55.
    Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water-CuO nanofluid in a sinusoidal channel with a porous medium. Physica E Low Dimens Syst Nanostruct. 2017;87:134–40.CrossRefGoogle Scholar
  56. 56.
    Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B Fluids. 2017;61:25–32.CrossRefGoogle Scholar
  57. 57.
    Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct. Physica E Low Dimens Syst Nanostruct. 2017;85:103–8.CrossRefGoogle Scholar
  58. 58.
    Afrand M, Toghraie D, Karimipour A, Wongwises SA. Numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.CrossRefGoogle Scholar
  59. 59.
    Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannel. Physica E Low Dimens Syst Nanostruct. 2016;84:152–61.CrossRefGoogle Scholar
  60. 60.
    Semiromi DT, Azimian AR. Nanoscale Poiseuille flow and effects of modified Lennard-Jones potential function. Heat Mass Transf. 2010;46:791–801.CrossRefGoogle Scholar
  61. 61.
    Semiromi DT, Azimian AR. Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transf. 2010;46:287–94.CrossRefGoogle Scholar
  62. 62.
    Semiromi DT, Azimian AR. Molecular dynamics simulation of nonodroplets with the modified Lennard-Jones potential function. Heat Mass Transf. 2010;47:579–88.CrossRefGoogle Scholar
  63. 63.
    Faridzadeh MR, Semiromi DT, Niroomand A. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf Res. 2014;45:361–90.CrossRefGoogle Scholar
  64. 64.
    Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7:1550052.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran
  2. 2.Department of Mechanical Engineering, Shahr Majlesi BranchIslamic Azad UniversityShahr MajlesiIran
  3. 3.Malek-ashtar university of technologyIsfahanIran
  4. 4.Young Researchers and Elite Club, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran
  5. 5.Young Researchers and Elite Club, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations