Skip to main content
Log in

Electrospun nanofiber-based nanoboron/nitrocellulose composite and their reactive properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanometal fuels have a great potential in energetic field for their high reactivity and their low ignition temperature. However, their high surface energy makes them aggregate. In this work, the electrospinning was employed to fabricate the nanoboron/nitrocellulose nanofibers expecting to enhance the reactivity of nanoboron. The results of SEM and TEM show that nanoboron is well dispersed in the nitrocellulose fiber matrix. TG–DSC confirms that the nanoboron in the fibers reacted more drastically than pure nanoboron and nanoboron/nitrocellulose powders resulted from the thermal analysis. Combustion propagation velocity shows that the presence of nanoboron in nitrocellulose fibers causes the faster and more intensive burning than the mechanical mixture of nanoboron and nitrocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang BY, Huang C, Yan S. Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling. Appl Surf Sci. 2013;286:91–8.

    Article  CAS  Google Scholar 

  2. Conner RW, Dlott DD. Comparing boron and aluminum nanoparticle combustion in teflon using ultrafast emission spectroscopy. J Phys Chem C. 2012;116:2751–60.

    Article  CAS  Google Scholar 

  3. Acharya S, Karmakar S, Dooley KM. Ignition and combustion of boron nanoparticles in ethanol spray flame. J Propuls Power. 2012;28(4):707–18.

    Article  Google Scholar 

  4. Brian VD, Jesus PLP, Scott LA. Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles. J Mater Res. 2009;24:3462–4.

    Article  Google Scholar 

  5. Liang D, Liu J, Li H, Zhou Y, Zhou J. Improving effect of boron carbide on the combustion and thermal oxidation characteristics of amorphous boron. J Therm Anal Calorim. 2017;128:1771–82.

    Article  CAS  Google Scholar 

  6. Li YC, Cheng Y, Hui YL, Yan S. The effect of ambient temperature and boron content on the burning rate of the B/Pb3O4 delay compositions. J Energ Mater. 2010;28(2):77–84.

    Article  Google Scholar 

  7. Li X, Huang C, Yang H, Li Y, Cheng Y. Thermal reaction properties of aluminum/copper (II) oxide/poly(vinylidene fluoride) nanocomposite. J Therm Anal Calorim. 2016;124:899–907.

    Article  CAS  Google Scholar 

  8. Bognitzki M, Becker M, Graeser M, Massa W, et al. Preparation of sub-micrometer copper fibers via electrospinning. Adv Mater. 2006;18:2384–6.

    Article  CAS  Google Scholar 

  9. Kong L, Ziegler GR. Fabrication of pure starch fibers by electrospinning. Food Hydrocoll. 2014;36:20–5.

    Article  CAS  Google Scholar 

  10. Liu D, Zhang X, Zhu L, Wua J, Lü X. Alternating ring-opening copolymerization of styrene oxide and maleic anhydride using asymmetrical bis-Schiff-base metal (III) catalysts. Catal Sci Technol. 2015;5:562–71.

    Article  CAS  Google Scholar 

  11. Pourmortazavi SM, Sadri M, Rahimi-Nasrabadi M, et al. Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Calorim. 2015;119:281–90.

    Article  CAS  Google Scholar 

  12. Wu S-H, Qin X-H. Effects of the stabilization temperature on the structure and properties of polyacrylonitrile-based stabilized electrospun nanofiber microyarns. J Therm Anal Calorim. 2014;116:303–8.

    Article  CAS  Google Scholar 

  13. Volova T, Goncharov D, Sukovatyi A, Shabanov A, Nikolaeva E, Shishatskaya E. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. J Biomater Sci Polym Ed. 2014;25:370–93.

    Article  CAS  Google Scholar 

  14. Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S. Fast-Impulse nanothermite solid-propellant miniaturized thrusters. J Propuls Power. 2013;29:1400–9.

    Article  CAS  Google Scholar 

  15. Korampally M, Apperson SJ, Staley CS, Castorena JA, Thiruvengadathan R, Gangopadhyay K, Mohan RR, Ghosh A, Polo-Parada L, Gangopadhyay S. Transient pressure mediated intranuclear delivery of FITC-Dextran into chicken cardiomyocytes by MEMS-based nanothermite reaction actuator. Sens Actuators, B. 2012;1292:171–2.

    Google Scholar 

  16. Wang Haiyang, Jian Guoqiang, Yan Shi, DeLisio Jeffery B, Huang Chuan, Zachariah Michael R. Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. ACS Appl Mater Interfaces. 2013;5:6797–801.

    Article  CAS  Google Scholar 

  17. Tabacof A, de Araújo Calado VM. Thermogravimetric analysis and differential scanning calorimetry for investigating the stability of yellow smoke powders. J Therm Anal Calorim. 2017;128:387–98.

    Article  CAS  Google Scholar 

  18. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124:1485–96.

    Article  CAS  Google Scholar 

  19. Xie L, Shao ZQ, Wang W, Wang FJ. Preparation of AlNPs/NC composite nanofibers by electrospinning. Integr Ferroelectr Int J. 2011;127:184–92.

    Article  CAS  Google Scholar 

  20. Yan S, Jian GQ, Zachariah MR. Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl Mater Interfaces. 2012;4:6432–5.

    Article  CAS  Google Scholar 

  21. Li R, Xu HM, Hu HL, Yang GC, Wang J, Shen JP. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J Energ Mater. 2014;32:50–9.

    Article  CAS  Google Scholar 

  22. Huwei L, Ruonong F. Studies on thermal decomposition of nitrocellulose by pyrolysis-gas chromatography. J Anal Pyrolysis. 1988;14:163–7.

    Article  Google Scholar 

  23. Sovizi MR, Hajimirsadeghia SS, Naderizadehb B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Laboratory Fund (9140C370304140C37173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, H., Hong, Y. et al. Electrospun nanofiber-based nanoboron/nitrocellulose composite and their reactive properties. J Therm Anal Calorim 130, 1063–1068 (2017). https://doi.org/10.1007/s10973-017-6607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6607-7

Keywords

Navigation