Skip to main content
Log in

The thermal behaviour of silica varieties used for tool making in the Stone Age

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Before 100,000 years ago, during the Middle Stone Age (MSA) of South Africa, silica varieties of minerals and rocks were sometimes heated during tool making in order to improve their knapping properties. If the heating and cooling process is not controlled, failure results and the nodules fracture. Recently, we postulated that the reversible α- to β-phase transition may play a role in causing silcrete, a type of rock often used to make stone tools in the Western Cape, to fracture. In this new study, we analyse the thermal behaviour (520–620 °C) of silcrete and compare it to that of two chalcedony samples from different origins, together with samples of chert, agate and flint. These minerals and rocks were commonly used to make stone tools. Differential scanning calorimetry (DSC) measurements show that the α- to β-phase transformation is prominent in silcrete, agate and one of the chalcedony samples, weaker in chert and the second chalcedony sample, but non-existent in flint. X-ray fluorescence (XRF), thermogravimetric analysis (TG) and carbon and sulphur analyses show differences in elemental composition between the rocks and minerals. X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy highlight differences in microstructure. These small differences in chemical composition and structure contribute to a variety of chemical reactions and phase transformations that can take place in rocks and minerals, which in combination determine their stability upon heating and show that care should be taken when generalising thermal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown K, Marean CW, Herries AIR, Jacobs Z, Tribolo Z, Braun D, Roberts DL, Meyer MC, Bernatchez J. Fire as an engineering tool of early modern humans. Science. 2009;325:859–62.

    Article  CAS  Google Scholar 

  2. Crabtree DE, Butler BR. Notes on experiments in flintknapping 1: heat treatment of silica materials. Tebiwa. 1964;7:1–16.

    Google Scholar 

  3. Purdy BA, Brooks HK. Thermal alteration of silica minerals: an archaeological approach. Science. 1971;173:322–5.

    Article  CAS  Google Scholar 

  4. Domanski M, Webb J. Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. J Archaeol Sci. 1992;19:601–14.

    Article  Google Scholar 

  5. Domanski M, Webb J. A review of heat treatment research. Lithic Technol. 2007;32:153–94.

    Article  Google Scholar 

  6. Borradaile GJ, Kissin SA, Stewart JD, Ross WA, Werner T. Magnetic and optical methods for detecting the heat treatment of chert. J Archaeol Sci. 1993;20:57–66.

    Article  Google Scholar 

  7. Schmidt P, Masseb S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C. Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci. 2012;39:135–44.

    Article  CAS  Google Scholar 

  8. Collins MB, Fenwick JM. Heat treating of chert: methods of interpretation and their application. Plains Anthropol. 1974;19:134–45.

    Article  Google Scholar 

  9. Schmidt P, Porraz G, Slodczyk A, Bellot-Gurlet L, Archer W, Miller CE. Heat treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications. J Archaeol Sci. 2013;40:3519–31.

    Article  CAS  Google Scholar 

  10. Beauchamp EK, Purdy BA. Decrease in fracture toughness of chert by heat treatment. J Mater Sci. 1986;21:1963–6.

    Article  CAS  Google Scholar 

  11. Purdy BA. Investigations concerning the thermal alteration of silica minerals: an archaeological approach. Tebiwa. 1974;17:37–66.

    CAS  Google Scholar 

  12. Olausson DL, Larsson L. Testing for the presence of thermal pretreatment of flint in the Mesolithic and Neolithic of Sweden. J Archaeol Sci. 1982;9:275–85.

    Article  Google Scholar 

  13. Wadley L, Prinsloo LC. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age. J Human Evol. 2014;70:49–60.

    Article  Google Scholar 

  14. Cairncross B. Field guide to rocks and minerals of Southern Africa. Cape Town: Struik; 2004.

    Google Scholar 

  15. Webb J, Finlayson B, Cochrane G, Doelman T, Domanski M. Silcrete quarries and artefact distribution in the Central Queensland Highlands, Eastern Australia. Archaeol Ocean. 2013;48:130–40.

    Google Scholar 

  16. Smykatz-Kloss W, Klinke W. The high-low quartz inversion—key to the petrogenesis of quartz-bearing rocks. J Therm Anal. 1997;48:19–38.

    Article  CAS  Google Scholar 

  17. Loubser M, Verryn S. Combining XRF and XRD analyses and sample preparation to solve mineralogical problems. S Afr J Geol. 2008;111:229–38.

    Article  CAS  Google Scholar 

  18. Raman CV, Nedungadi TMK. The alpha beta transformation of quartz. Nature. 1940;145:147.

    Article  CAS  Google Scholar 

  19. Rao CNR, Gopalakrishnan J. New directions in solid state chemistry. In: Cambridge solid state science series. Cambridge: Cambridge University Press; 1986. p. 148-155.

  20. Barker C, Robinson SJ. Thermal release of water from natural quartz. Am Miner. 1984;69:1078–81.

    CAS  Google Scholar 

  21. Colomban Ph, Slodczyk A. The structural and dynamics neutron study of proton conductors: difficulties and improvement procedures in protonated perovskite. A Eur Phys J Spec Top. 2012. doi:10.1140/epjst/e2012-01670-7.

    Google Scholar 

  22. Kerr R, Wood N. Science and civilisation in China Volume 5: chemistry and chemical technology, Part 12, ceramic technology. Cambridge: Cambridge University Press; 2004. p. 57. ISBN, 0521838339, 9780521838337.

  23. Ríos S, Salje EKH, Redfern SAT. Nanoquartz versus macroquartz: a study of the αβ phase transition. Eur Phys J B. 2001;20:75–83.

    Article  Google Scholar 

  24. Dubrawski JV. The effect of particle size on the determination of quartz by differential scanning calorimetry. Thermochim Acta. 1987;120:257–60.

    Article  CAS  Google Scholar 

  25. Blasy M. Variability of α/ß inversion temperatures of natural quartz. Int J Sci Res. 2014;3(10):454–8.

    Google Scholar 

  26. Vettegren VI, Sobolev GA, Kireenkova SM, et al. Effect of water on the αβ phase transitionin a surface quartz layer. Phys Solid State. 2014;56:1228–33. doi:10.1134/S1063783414060377.

    Article  CAS  Google Scholar 

  27. Ghiorso MS, Carmichael ISE, Moret LK. Inverted high-temperature quartz. Contrib Miner Pet. 1997;68:307–23.

    Article  Google Scholar 

  28. Kostyrko K, Skoczylas M, Klee A. Certified reference materials for thermal analysis. J Therm Anal. 1988;33:351–7.

    Article  Google Scholar 

  29. Colomban Ph. Proton and protonic species: the hidden face of solid state chemistry. How to measure H-content in materials? Fuel Cells. 2013;13(1):6–18.

    Article  CAS  Google Scholar 

  30. Xing Z, Beaucour A, Hebert R, Noumowe A, Ledesert B. Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature. Cem Concrete Res. 2011;41(4):392–402.

    Article  CAS  Google Scholar 

  31. Razafinjato RN, Beaucour A, Hebert RL, Ledesert B, Bodet R, Noumowe A. High temperature behaviour of a wide petrographic range of siliceous and calcareous aggregates for concretes. Constr Build Mater. 2016;123:261–73.

    Article  Google Scholar 

  32. Tucker ME. Sedimentary petrology: an introduction to the origin of sedimentary rocks. 3rd ed. Oxford: Blackwell Science; 2001.

    Google Scholar 

  33. Adamo I, Ghisoli C, Caucia F. A contribution to the study of FTIR spectra of opals. N Jb Miner Abh. 2010;187(1):63–8.

    Article  CAS  Google Scholar 

  34. Gouadec G, Colomban Ph. Raman spectroscopy of nanostructures and nanosized materials. J Raman Spectrosc. 2009;38:598–603.

    Article  Google Scholar 

  35. Froment F, Tournié A, Colomban Ph. Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J Raman Spectrosc. 2008;39:560–8.

    Article  CAS  Google Scholar 

  36. Fritsch E, Rossman GR. An update on color in gems. Part 1: introduction and colors caused by dispersed metal ions. Gems and Gemology. 1987;23(3):126–39.

    Article  Google Scholar 

  37. López A, Frost RL. Raman spectroscopy of pyrite in marble from Chillagoe, Queensland. J Raman Spectrosc. 2015;46(10):1033–6.

    Article  Google Scholar 

  38. Wadley L, de la Peña P, Prinsloo LC. Thermal responses of South African agate and chalcedony when heated experimentally, and the global implications for heated archaeological minerals. J. Field Archaeol. 2017 online.

  39. Labus M. Thermal methods implementation in analysis of fine-grained rocks containing organic matter. J Therm Anal Calorim. 2017;15:1–9.

    Google Scholar 

  40. Sitarz M, Wyszomirski P, Handke B, Jelen P. Moganite in selected Polish chert samples: the evidence from MIR, Raman and X-ray studies. Spectrochim Acta Mol Biomol Spectrosc. 2014;122:55–8.

    Article  CAS  Google Scholar 

  41. Schmidt P. What causes failure (overheating) during lithic heat treatment? Archaeol Anthropol Sci. 2014;6(2):107–12.

    Article  Google Scholar 

  42. Schmidt P, Badou A, Fröhlich F. Detailed FT near-infrared study of the behavior of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat treatment. Spectrochim Acta Part A. 2011;81:552–9.

    Article  CAS  Google Scholar 

  43. Zhang LH, Gong H, Wang JP. Thermal decomposition kinetics of amorphous carbon nitride and carbon films. J Phys Condens Matter. 2002;14:1697–708.

    Article  CAS  Google Scholar 

  44. Damby DE, Llewellin EW, Horwell CJ, Williamson BJ, Najorka J, Cresseye G, Carpenter M. The αβ phase transition in volcanic cristobalite. J Appl Cryst. 2014;47:1205–15.

    Article  CAS  Google Scholar 

  45. Mercieca A. Burnt and broken: an experimental study of heat fracturing in silcrete. Aust Archaeol. 2000;51:40–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Wiebke Grote and Dr. Jeanette Dykstra from the XRD & XRF Facility, Department of Geology, University of Pretoria, for the XRD and XRF measurements, respectively. We thank Paloma de la Peña for providing the flint sample and G. L. Prinsloo for the digital images of the samples. All the authors acknowledge the National Research Foundation (NRF) for financial support. Opinions expressed in the paper are not necessarily those of the NRF. We thank two anonymous reviewers for useful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Prinsloo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinsloo, L.C., van der Merwe, E.M. & Wadley, L. The thermal behaviour of silica varieties used for tool making in the Stone Age. J Therm Anal Calorim 131, 1135–1145 (2018). https://doi.org/10.1007/s10973-017-6602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6602-z

Keywords

Navigation