Skip to main content
Log in

The mechanical properties of heat-treated rocks: a comparison between chert and silcrete

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

In archaeology, heat treatment of stone is the process of “making” a new material for tool production. Its invention in the African Middle Stone Age was an important step in the evolution of transformative technologies and the cultural evolution of early humans in general. Although the chemical and crystallographic transformations in silica rocks, the only material class heat-treated in the Stone Age, begin to be well known, many of the mechanical transformations and their chemical origins remain a subject of controversy. The difference between different silica rock categories is also only poorly understood. In this paper, we investigate the thermally induced changes of three mechanical properties in the two silica rock types chert and silcrete: fracture strength, indentation fracture resistance (approximating fracture toughness) and elastic modulus. These tests are complemented by statistical analyses (Weibull modulus) and a quantitative fracture surface analysis. The results show that heat treatment transforms these silica rocks in terms of their fracture toughness and the uniformity of fracture. A comparison with published data on the structural transformations in the same samples identified the loss of chemically bound water and subsequent defect healing to be the chemical mechanism behind these mechanical transformations. These findings have important implications for the study of the interactions between chemical and structural processes and the mechanics of natural rocks or ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angel RJ, Jackson JM, Reichmann HJ, Speziale S (2009) Elasticity measurements on minerals: a review. Eur J Mineral 21(3):525–550

    Article  Google Scholar 

  • Asmani M, Kermel C, Leriche A, Ourak M (2001) Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics. J Eur Ceram Soc 21(8):1081–1086

    Article  Google Scholar 

  • Bachheimer JP (1980) An anomaly in the β phase near the α-β transition of quartz. J Phys Lett 41(23):559–561

    Article  Google Scholar 

  • Bleed P, Meier M (1980) An objective test of the effects of heat treatment of Flakeable stone. Am Antiq 45(3):502–507

    Article  Google Scholar 

  • Bordes F (1969) Traitement thermique du silex au Solutréen. Bull Soc Préhist Fr 66(7):197

    Google Scholar 

  • Bragg W, Gibbs RE (1925) The structure of α and β quartz. Proc R Soc London Ser A 109(751):405–427

    Article  Google Scholar 

  • Brown KS, Marean CW, Herries AIR, Jacobs Z, Tribolo C, Braun D, Roberts DL, Meyer MC, Bernatchez J (2009) Fire as an engineering tool of early modern humans. Science 325(5942):859–862

    Article  Google Scholar 

  • Cady SL, Wenk HR, Sintubin M (1998) Microfibrous quartz varieties: characterization by quantitative X-ray texture analysis and transmission electron microscopy. Contrib Mineral Petrol 130(3):320–335

    Article  Google Scholar 

  • Cayeux L (1929) Les Roches sédimentaires de France. Roches siliceuses, vol 1. Impr. Nat., Paris

  • Cochrane GWG, Habgood PJ, Doelman T, Herries AIR, Webb JA (2012) A progress report on research into stone artefacts of the southern Arcadia Valley, Central Queensland. Aust Archaeol 75:104–109

    Article  Google Scholar 

  • Corkill T (1997) Red, yellow and black: colour and heat in archaeological stone. Aust Archaeol 45:54–55

    Article  Google Scholar 

  • Crabtree DE, Butler BR (1964) Notes on experiment in Flint knapping: 1 heat treatment of silica materials. Tebiwa 7:1–6

    Google Scholar 

  • Danzer R, Lube T, Rasche S (2016) On the development of experimental methods for the determination of fracture mechanical parameters of ceramics. In: Hütter G, Zybell L (eds) Recent trends in fracture and damage mechanics. Springer International Publishing, Cham, pp 197–214. https://doi.org/10.1007/978-3-319-21467-2_8

    Chapter  Google Scholar 

  • Dejoie C, Tamura N, Kunz M, Goudeau P, Sciau P (2015) Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J Appl Crystallogr 48(5):1522–1533. https://doi.org/10.1107/S1600576715014983

    Article  Google Scholar 

  • Delagnes A, Schmidt P, Douze K, Wurz S, Bellot-Gurlet L, Conard NJ, Nickel KG, van Niekerk KL, Henshilwood CS (2016) Early evidence for the extensive heat treatment of Silcrete in the Howiesons Poort at Klipdrift shelter (layer PBD, 65 ka), South Africa. PLoS One 11(10):e0163874. https://doi.org/10.1371/journal.pone.0163874

    Article  Google Scholar 

  • DIN EN 843 2 (2006) Hochleistungskeramik -Mechanische Eigenschaften monolithischer Keramik bei Raumtemperatur - Teil, vol 2. Bestimmung des Elastizitätsmoduls, Schubmoduls und der Poissonzahl. Beuth Verlag, Berlin

    Google Scholar 

  • Dolino G, Bachheimer JP, Berge B, Zeyen CME (1984) Incommensurate phase of quartz : I. elastic neutron scattering. J Phys 45(2):361–371

    Article  Google Scholar 

  • Domanski M, Webb JA (1992) Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. J Archaeol Sci 19(6):601–614

    Article  Google Scholar 

  • Domanski M, Webb JA, Boland J (1994) Mechanical properties of stone artefact materials and the effect of heat treatment. Archaeometry 36(2):177–208

    Article  Google Scholar 

  • Domanski M, Webb J, Glaisher R, Gurba J, Libera J, Zakoscielna A (2009) Heat treatment of polish flints. J Archaeol Sci 36(7):1400–1408

    Article  Google Scholar 

  • Ebright CA (1987) Quartzite petrography and its implications for prehistoric use and archeological analysis. Archaeol East N Am 15:29–45

    Google Scholar 

  • Eriksen BV (1997) Implications of thermal pre-treatment of chert in the German Mesolithic. In: Schild R, Sulgostowska Z (eds) Man and Flint, proceedings of the VII international Flint symposium Warszawa-Ostrowiec Swietokrzyski, September 1995. Institute of Archaeology and Ethnology Polish Academy of Sciences, Warsaw, pp 325–329

    Google Scholar 

  • Flenniken J (1987) The Paleolithic Dyuktai pressure blade technique of Siberia. Arct Anthropol 24:117–132

    Google Scholar 

  • Flenniken JJ, Garrison EG (1975) Thermally altered Novaculite and stone tool manufacturing techniques. J Field Archaeol 2:125–131

    Google Scholar 

  • Flenniken JL, White JP (1983) Heat treatment of siliceous rocks and its implication for Australian prehistory. Aust Aborig Stud 1:43–48

    Google Scholar 

  • Flörke OW, Köhler-Herbertz B, Langer K, Tönges I (1982) Water in microcrystalline quartz of volcanic origin: agates. Contrib Mineral Petrol 80(4):324–333

    Article  Google Scholar 

  • Flörke OW, Graetsch H, Martin B, Roller K, Wirth R (1991) Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues Jb Mineral Abh 163(1):19–42

    Google Scholar 

  • Füchtbauer H (1988) Sedimente und Sedimentgesteine, 4th edn. Schweizerbart, Stuttgart

    Google Scholar 

  • Fukuda J, Yokoyama T, Kirino Y (2009) Characterization of the states and diffusivity of intergranular water in a chalcedonic quartz by high-temperature in situ infrared spectroscopy. Mineral Mag 73(5):825–835. https://doi.org/10.1180/minmag.2009.073.5.825

    Article  Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1985) The nature of water in chalcedony and opal-C from brazilian agate geodes. Phys Chem Miner 12(5):300–306

    Article  Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1987) Structural defects in microcrystalline silica. Phys Chem Miner 14(3):249–257

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  • Griffiths DR, Bergman CA, Clayton CJ, Ohnuma K, Robins GV (1987) Experimental investigation of the heat treatment of flint. In: Sieveking GG, Newcomer MH (eds) The human uses of flint and chert, Proceedings of the fourth international flint symposium held at Brighton Polytechnic 10-15 April 1983. Cambridge University Press, Cambridge, pp 43–52

    Google Scholar 

  • Hanckel M (1985) Hot rocks: heat treatment at Burrill Lake and Currarong, New South Wales. Archaeol Ocean 20(3):98–103

    Article  Google Scholar 

  • Hester TR (1972) Ethnographic evidence for the thermal alteration of siliceous stone. Tebiwa 15:63–65

    Google Scholar 

  • Hiscock P (1993) Bondian technology in the Hunter Valley, New South Wales. Archaeol Ocean 28:65–76

    Article  Google Scholar 

  • Hurst S, Cunningham D, Johnson E (2015) Experiments in late archaic methods of heat-treating Ogallala formation quartzarenite clasts along the southern High Plains eastern escarpment of Texas. J Archaeol Sci Rep 3:207–215. https://doi.org/10.1016/j.jasrep.2015.06.006

    Google Scholar 

  • Inizan ML, Tixier J (2001) L'émergence des arts du feu : le traitement thermique des roches siliceuses. Paléorient 26(2):23–36

    Article  Google Scholar 

  • Inizan ML, Roche H, Tixier J (1976) Avantages d'un traitement thermique pour la taille des roches siliceuses. Quaternaria Roma 19:1–18

    Google Scholar 

  • Kerkhof F, Müller-Beck H (1996) Zur bruchmechanischen Deutung der Schlagmarken an Steingeräten. Glastech Ber 42:439–448

    Google Scholar 

  • Kononenko AV, Kononenko NA, Kajiwara H (1998) Implications of heat treatment experiments on lithic materials from the Zerkalnaya River basin in the Russian Far East. Proc SCA 11:19–25

    Google Scholar 

  • Kronenberg AK (1994) Hydrogen speciation and chemical weakening of quartz. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behaviour, geochemistry and materials applications, Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, pp 123–176

    Chapter  Google Scholar 

  • Léa V (2005) Raw, pre-heated or ready to use: discovering specialist supply systems for flint industries in mid-Neolithic (Chassey culture) communities in southern France. Antiquity 79:1–15

    Article  Google Scholar 

  • Léa V, Roque-Rosell J, Binder D, Sciau P, Pelegrin J, Regert M, Torchy L, Vaquer J, Cousture M-P, Roucau C (2012) Craft specialization and exchanges during the southern Chassey culture: an integrated archaeological and material sciences approach. In: Colloque international networks in the Neolithic exchange of raw materials, products and ideas in the Western Mediterranean-VII°-III° millennium BC, Février 2011, Barcelona, Spain, pp 119–127

  • Mandeville MD (1973) A consideration of the thermal pretreatment of chert. Plains Anthropol 18:177–202

    Article  Google Scholar 

  • Marean CW (2015) An evolutionary anthropological perspective on modern human origins. Annu Rev Anthropol 44:533–556

    Article  Google Scholar 

  • McBrearty S, Brooks AS (2000) The revolution that wasn't: a new interpretation of the origin of modern human behavior. J Hum Evol 39(5):453–563. https://doi.org/10.1006/jhev.2000.0435

    Article  Google Scholar 

  • Micheelsen H (1966) The structure of dark flint from Stevns, Denmark. Medd Dansk Geol Foren 16:285–368

    Google Scholar 

  • Miehe G, Graetsch H, Flörke OW (1984) Crystal structure and growth fabric of length-fast chalcedony. Phys Chem Miner 10(5):197–199

    Article  Google Scholar 

  • Milot J, Siebenaller L, Béziat D, Léa V, Schmidt P, Binder D (2017) Formation of fluid inclusions during heat treatment of Barremo-Bedoulian Flint: Archaeometric implications. Archaeometry 59(3):417–434

    Article  Google Scholar 

  • Mirwald PW, Massonne H-J (1980) The low-high quartz and quartz-Coesite transition to 40 kbar between 600°C and 1600°C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-Coesite transition. J Geophys Res 85(B12):6983–6990

    Article  Google Scholar 

  • Morrell R (1985) Handbook of properties of technical and engineering ceramics. H.M.S.O, London

    Google Scholar 

  • Mourre V, Villa P, Henshilwood CS (2010) Early use of pressure flaking on lithic artifacts at Blombos cave, South Africa. Science 330(6004):659–662

    Article  Google Scholar 

  • Munz D, Fett T (1989) Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, vol 36. Springer Series in Materials Science, Berlin

    Google Scholar 

  • Nash DJ, Ullyott JS (2007) Silcrete. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. John Wiley, Chichester, pp 95–143

    Chapter  Google Scholar 

  • Niihara K, Morena R, Hasselman DPH (1982) Evaluation of KIC of brittle solids by the indentation method with low crack-to-indentation ratios. J Mater Sci Lett 1(1):13–16

    Article  Google Scholar 

  • Pais JC, Harvey JT (2012) Four point bending. Taylor & Francis, Leiden

    Book  Google Scholar 

  • Porraz G, Texier P-J, Archer W, Piboule M, Rigaud J-P, Tribolo C (2013) Technological successions in the middle stone age sequence of Diepkloof rock shelter, Western cape, South Africa. J Archaeol Sci 40(9):3376–3400. https://doi.org/10.1016/j.jas.2013.02.012

    Article  Google Scholar 

  • Porraz G, Igreja M, Schmidt P, Parkington JE (2016) A shape to the microlithic Robberg from Elands Bay cave (South Africa). South Afr Humanit 29:203–247

    Google Scholar 

  • Purdy BA (1974) Investigations concerning the thermal alteration of silica minerals: an archaeological approach. Tebiwa 17:37–66

    Google Scholar 

  • Purdy BA, Brooks HK (1971) Thermal alteration of silica minerals: an archeological approach. Science 173(3994):322–325

    Article  Google Scholar 

  • Rios S, Salje EKH, Redfern SAT (2001) Nanoquartz vs. macroquartz: a study of the a - ß phase transition. Eur Phys J B 20:75–83

    Article  Google Scholar 

  • Ritchie RO (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract 100(1):55–83. https://doi.org/10.1023/A:1018655917051

    Article  Google Scholar 

  • Roberts DL (2003) Age, genesis and significance of south african coastal belt silcretes, memoir 95. Council for Geoscience, Pretoria

    Google Scholar 

  • Rowney M, White JP (1997) Detecting heat treatment on Silcrete: experiments with methods. J Archaeol Sci 24(7):649–657

    Article  Google Scholar 

  • Schindler DL, Hatch JW, Hay CA, Bradt RC (1982) Aboriginal thermal alteration of a Central Pennsylvania Jasper: analytical and behavioral implications. Am Antiq 47(3):526–544

    Article  Google Scholar 

  • Schmidt P (2014) What causes failure (overheating) during lithic heat treatment? Archaeol Anthropol Sci 6(2):107–112

    Article  Google Scholar 

  • Schmidt P, Mackay A (2016) Why was Silcrete heat-treated in the middle stone age? An early transformative Technology in the Context of raw material use at Mertenhof rock shelter, South Africa. PLoS One 11(2):e0149243. https://doi.org/10.1371/journal.pone.0149243

    Article  Google Scholar 

  • Schmidt P, Badou A, Fröhlich F (2011) Detailed FT near-infrared study of the behaviour of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat treatment. Spectrochim Acta A Mol Biomol Spectrosc 81(1):552–559

    Article  Google Scholar 

  • Schmidt P, Bellot-Gurlet L, Slodczyk A, Fröhlich F (2012a) A hitherto unrecognised band in the Raman spectra of silica rocks: influence of hydroxylated Si–O bonds (silanole) on the Raman moganite band in chalcedony and flint (SiO2). Phys Chem Miner 39(6):455–464. https://doi.org/10.1007/s00269-012-0499-7

    Article  Google Scholar 

  • Schmidt P, Masse S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C, Livage J, Fröhlich F (2012b) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39(1):135–144

    Article  Google Scholar 

  • Schmidt P, Léa V, Sciau P, Fröhlich F (2013a) Detecting and quantifying heat treatment of flint and other silica rocks: a new non-destructive method applied to heat-treated flint from the Neolithic Chassey culture, southern France. Archaeometry 55(5):794–805

    Article  Google Scholar 

  • Schmidt P, Porraz G, Slodczyk A, Bellot-Gurlet L, Archer W, Miller CE (2013b) Heat treatment in the south African middle stone age: temperature induced transformations of silcrete and their technological implications. J Archaeol Sci 40(9):3519–3531

    Article  Google Scholar 

  • Schmidt P, Slodczyk A, Léa V, Davidson A, Puaud S, Sciau P (2013c) A comparative study of the thermal behaviour of length-fast chalcedony, length-slow chalcedony (quartzine) and moganite. Phys Chem Miner 40(4):331–340. https://doi.org/10.1007/s00269-013-0574-8

    Article  Google Scholar 

  • Schmidt P, Porraz G, Bellot-Gurlet L, February E, Ligouis B, Paris C, Texier JP, Parkington JE, Miller CE, Nickel KG, Conard NJ (2015) A previously undescribed organic residue sheds light on heat treatment in the middle stone age. J Hum Evol 85:22–34

    Article  Google Scholar 

  • Schmidt P, Paris C, Bellot-Gurlet L (2016) The investment in time needed for heat treatment of flint and chert. Archaeol Anthropol Sci 8(4):839–848

    Article  Google Scholar 

  • Schmidt P, Lauer C, Buck G, Miller CE, Nickel KG (2017a) Detailed near-infrared study of the ‘water’-related transformations in silcrete upon heat treatment. Phys Chem Miner 44(1):21–31. https://doi.org/10.1007/s00269-016-0833-6

    Article  Google Scholar 

  • Schmidt P, Nash DJ, Coulson S, Göden MB, Awcock GJ (2017b) Heat treatment as a universal technical solution for silcrete use? A comparison between silcrete from the Western cape (South Africa) and the Kalahari (Botswana). PLoS One 12(7):e0181586

    Article  Google Scholar 

  • Sealy J (2009) Modern behaviour in ancient south Africans: evidence for the heat treatment of stones in the middle stone age. S Afr J Sci 105:323–324

    Google Scholar 

  • Shippee JM (1963) Was Flint annealed before flaking? Plains Anthropol 8(22):271–272

    Google Scholar 

  • Sollberger JB, Hester TR (1973) Some additional data on the thermal alteration of siliceous stone. Bull Okla Anthrop Soc 21:181–185

    Google Scholar 

  • Summerfield MA (1981) The nature and occurrence of Silcrete, southern Cape Province, South Africa. South Africa School of Geography Research Paper 28, University of Oxford

  • Summerfield MA (1983) Petrography and diagenesis of silcrete from the Kalahari Basin and cape coastal zone, southern Africa. J Sediment Res 53(3):895–909

    Google Scholar 

  • Thiry M (1991) Pedogenic and groundwater silcretes at Stuart Creek opal field, South Australia. J Sediment Res 61(1):111

    Google Scholar 

  • Tiffagom M (1998) Témoignages d'un traitement thermique des feuilles de laurier dans le Solutréen supérieur de la grotte du Parpalló (Gandia, Espagne). Paléo 10:147–161

    Article  Google Scholar 

  • Tixier J, Inizan M-L, Roche H, Dauvois M (1980) Préhistoire de la pierre taillée. I Terminologie et technologie. Cercle de Recherches et d'Etudes Préhistoriques, Antibes

    Google Scholar 

  • Tognana S, Salgueiro W, Somoza A, Marzocca A (2010) Measurement of the Young's modulus in particulate epoxy composites using the impulse excitation technique. Mater Sci Eng A 527(18–19):4619–4623. https://doi.org/10.1016/j.msea.2010.04.083

    Article  Google Scholar 

  • Tucker ME (1991) Sedimentary petrology, an introduction to the origin of sedimentary rocks, 2nd edn. Blackwell scientific publications, Oxford

    Google Scholar 

  • van Tendeloo G, Landuyt J, Amelinckx S (1976) The α → β phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Phys Status Solidi A 33(2):723–735

    Article  Google Scholar 

  • Wachtman J, Cannon W, Matthewson M (2009) Mechanical properties of ceramics. Wiley, Hoboken

    Book  Google Scholar 

  • Wadley L (2013) Recognizing complex cognition through innovative Technology in Stone age and Palaeolithic Sites. Camb Archaeol J 23(02):163–183

    Article  Google Scholar 

  • Wadley L, Prinsloo LC (2014) Experimental heat treatment of silcrete implies analogical reasoning in the middle stone age. J Hum Evol 70(0):49–60

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Wilke PJ, Flenniken J, Ozbun TL (1991) Clovis Technology at the Anzick Site, Montana. J Calif Gt Basin Anthropol 13(2):242–272

    Google Scholar 

  • Yonekura K (2010) Experimental study on heat alteration of Palaeolithic material: preliminary results from shale in the northeastern region of Japan. Asian Perspect 49(2):348–362

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Schafflick, B. Maier and Brecht GmbH in Wannweil for their assistance with sample preparation, V. Léa for providing chert sample VC-12-05 and J. Plasket for her assistance with collecting the three WK-13- silcrete samples.

Funding

This study was financially supported by the Deutsche Forschungsgemeinschaft (DFG) of the research project Heat Treatment in the South African MSA that made the present study possible (Grant Nr: CO 226/25-1, MI 1748/2-1, NI 299/25-1 and SCHM 3275/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, P., Buck, G., Berthold, C. et al. The mechanical properties of heat-treated rocks: a comparison between chert and silcrete. Archaeol Anthropol Sci 11, 2489–2506 (2019). https://doi.org/10.1007/s12520-018-0710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-018-0710-y

Keywords

Navigation