Skip to main content
Log in

Surface crystallization and phase evolution of BaO–SrO–TiO2–SiO2–Al2O3-based glass ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The goal of the work was to investigate the crystallization process of silica–strontium–barium glass from cathode ray tube (CRT) modified by various TiO2 additions (18–23 mass%). The control thermal treatment of the parent glass with nucleating agent leads to the crystallization. The crystalline phases were determined by X-ray diffractometry. The microstructures of the heat-treated samples were studied by the SEM/EDS technique. Glass ceramic samples were obtained by the heat treatment of CRT glasses with 18 and 23 mass% of TiO2 in a gradient oven. Thermal characteristics such as the glass transition temperature T g, the temperature of non-isothermal crystallization T c, and the thermal stability parameter were determined by DTA/DSC. The linear expansion coefficients of the glasses as a function of temperature were measured. Based on the DTA results, we found that TiO2 was effective in decreasing the crystallization temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. König J, Petersen RR, Yue Y. Fabrication of highly insulating foam glass made from CRT panel glass. Ceram Int. 2015;41:9793–800.

    Article  Google Scholar 

  2. Zhang Q, He F, Shu H, Qiao Y, Mei S, Jin M, Xie J. Preparation of high strength glass ceramic foams from waste cathode ray tube and germanium tailings. Constr Build Mater. 2016;111:105–10.

    Article  CAS  Google Scholar 

  3. Andreola F, Barbieri L, Karamanova E, Lancellotti I, Pelino M. Recycling of CRT panel glass as fluxing agent in the porcelain stoneware tile production. Ceram Int. 2008;34:1289–95.

    Article  CAS  Google Scholar 

  4. Maity S, Mukhopadhyay TK, Sarkar BK. Stregth of sillimanite sand reinforced porcelain subjected to thermal shock. J Eur Ceram Soc. 1997;17:749–52.

    Article  CAS  Google Scholar 

  5. Dondi M, Guarini G, Raimondo M, Zanelli C. Recycling PC and TV waste glass in clay bricks and roof tiles. Waste Manag. 2009;29:1945–51.

    Article  CAS  Google Scholar 

  6. Hreglich S, Falcone R, Vallotto M. The recycling of EOL panel glass from TV sets in glass fibres and ceramic productions. In Proceedings of the International Symposium Recycling and Reuse of Glass Cullet, Dundde; 2001. p. 123–134.

  7. Laza˘u I, Borca˘nescu S, Pa˘curariu C, Vancea C. Kinetic study of the non-isothermal crystallization process of hematite in ceramic glazes obtained from CRT wastes. J Therm Anal Calorim. 2013;112:345–51.

    Article  Google Scholar 

  8. Reben M, Wasylak J, Kosmal M. Glass-ceramics from kinescope glass cullet. In: Varshneya AK, Schaeffer HA, Richardson KA, Wightman M, Pye LD, editors. Processing, properties, and applications of glass and optic materials: ceramic transactions, vol. 231. Hoboken: Wiley; 2012. p. 151–9.

    Chapter  Google Scholar 

  9. Andreola F, Barbieri L, Bondioli F, Lancellotti I, Miselli P, Ferrari AM. Recycling of screen glass into new traditional ceramic materials. Int J Appl Ceram Technol. 2010;7:909–17.

    Article  CAS  Google Scholar 

  10. Grelowska I, Kosmal M, Reben M, et al. Structural and thermal studies of modified silica-strontium-barium glass from CRT. J Mol Struct. 2016;1126:265–74.

    Article  CAS  Google Scholar 

  11. Reben M, Kosmal M, Palczynska N, et al. Waste immobilization and environmental sustainability in glass-ceramics glazes development. In: 1st international conference on the sustainable energy and environment development (SEED 2016). Book Series: E3S web of conferences, vol. 10; 2016. E3S Web conference, 10; 2016. p. 00071.

  12. Basaran C, Canikoglu N, Toplan HO, Toplan N. The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste. J Therm Anal Calorim. 2016;125:695–701.

    Article  CAS  Google Scholar 

  13. Fokin VM, Abyzov AS, Zanotto ED, et al. Crystal nucleation in glass-forming liquids: variation of the size of the “structural units” with temperature. J Non-Cryst Solids. 2016;447:35–44.

    Article  CAS  Google Scholar 

  14. Schmelzer JWP, Abyzov AS, Fokin VM, et al. Crystallization of glass-forming liquids: maxima of nucleation, growth, and overall crystallization rates. J Non-Cryst Solids. 2015;429:24–32.

    Article  CAS  Google Scholar 

  15. Karasu B, Turan S. Effects of cobalt, copper, manganese and titanium oxide additions on the microstructures of zinc containing soft porcelain glazes. J Eur Ceram Soc. 2002;22(9–10):1447–55.

    Article  CAS  Google Scholar 

  16. Ovecoglu ML, Kuban B, Ozer H. Characterization and crystallization kinetics of a diopside-based glass–ceramic developed from glass industry raw materials. J Eur Ceram Soc. 1997;17(7):957–62.

    Article  CAS  Google Scholar 

  17. Chen W, Chen K, Mao JB. Effect of TiO2 on the mechanical properties of the K2O–MgO–SiO2–CaF2 glass-ceramics, key engineering materials, 1999. In: Conference: 2nd international symposium on science of engineering ceramics (EnCera 98), Osaka, Japan. SEP 06-09, 1998. Sponsor(s): Ceram Soc Japan; Amer Ceram Soc; European Ceram Soc; Fine Ceram Res Assoc. Science Of Engineering Ceramics II. Book Series: Key Engineering Materials, vol: 2; 1999. p. 185–8.

  18. Barbieri L. Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass–ceramic. Mater Res Bull. 1997;32(6):637–48.

    Article  CAS  Google Scholar 

  19. Duan RG, Liang KM, Gu SH. Effect of changing TiO2 content on structure and crystallization of CaO–Al2O3–SiO2 system glasses. J Eur Ceram Soc. 1998;18(12):1729–35.

    Article  CAS  Google Scholar 

  20. Morimoto S, Kuriyama N. Effect of TiO2, ZrO2 and P2O5 on the crystallization of SiO2–Al2O3–MgO–CaO–Na2O glass system. J Ceram Soc Jpn. 1996;104(5):466–8.

  21. Reben M, Środa M. Influence of fluorine on thermal properties of lead oxyfluoride glass. J Therm Anal Calorim. 2013;13(1):77–81.

    Article  Google Scholar 

  22. Reben M, Kosmal M, Ziąbka M, Pichniarczyk P, Grelowska I. The influence of TiO2 and ZrO2 on microstructure and crystallization behavior of CRT glass. J Non-Cryst Solids. 2015;425:118–23.

    Article  CAS  Google Scholar 

  23. Khair-u-Nisa, Ahmed E, Ahmad W. Novel alkali-niobic bismuth germanate glass system. J Therm Anal Calorim. 2017;128(3):1527–34.

    Article  CAS  Google Scholar 

  24. Kerstan M, Ru¨ssel C. Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high temperature X-ray diffraction (HT-XRD). J Power Sources. 2011;196(18):7578–84.

    Article  CAS  Google Scholar 

  25. Mollazadeh S, Eftekhari B, Yekta J, Javadpour A, Yusefi A, Jafarzadeh TS. The role of TiO2, ZrO2, BaO and SiO2 on the mechanical properties and crystallization behavior of fluorapatite–mullite glass–ceramics. J Non-Cryst Solids. 2013;361:70–7.

    Article  CAS  Google Scholar 

  26. Pospíšil J, Mošner P, Koudelka L. Thermal behaviour and crystallization of titanium–zinc borophosphate glasses. J Therm Anal Calorim. 2006;84(2):479–82.

    Article  Google Scholar 

  27. Apel E, van’t Hoen C, Rheinberger V, Höland W. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multicomponent system. J Eur Ceram Soc. 2007;27:1571–7.

    Article  CAS  Google Scholar 

  28. Sinouh H, Bih L, Manoun B, Lazor P. Thermal analysis and crystallization of the glasses inside the BaO–SrO–TiO2–NaPO3 system. J Therm Anal Calorim. 2017;128:883–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kosmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmal, M., Reben, M., Pichniarczyk, P. et al. Surface crystallization and phase evolution of BaO–SrO–TiO2–SiO2–Al2O3-based glass ceramics. J Therm Anal Calorim 130, 221–228 (2017). https://doi.org/10.1007/s10973-017-6566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6566-z

Keywords

Navigation