Skip to main content
Log in

Phase-transition-like phenomenon of NH4H2PO4 observed using MAS NMR and static NMR near characteristic temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We used Fourier-transform nuclear magnetic resonance (NMR) spectroscopy to investigate the temperature dependences of the chemical shift and resonance frequency observed with magic-angle spinning NMR and static NMR, respectively, to confirm a high-temperature behavior of NH4H2PO4. The hydrogen bonds in both O–H–O between two PO4 groups and N–H–O between NH4 and PO4 were distinguished, and the changes occurring in the chemical shift and resonance frequency near the characteristic temperature TP are related to changes in the atomic positions. The experimental results of thermogravimetric analysis conducted to interpret the high-temperature phenomena without the critical change around TP are consistent with a phase-transition-like phenomenon at TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eichele K, Wasylishen RE. 31P NMR study of powder and single-crystal samples of ammonium dihydrogen phosphate: effect of homonuclear dipolar coupling. J Phys Chem. 1994;98:3108–13.

    Article  CAS  Google Scholar 

  2. Osterheld RK, Markowitz MM. Polymerization and depolymerization phenomena in phosphate-metaphosphate systems at higher temperatures. IV. Condensation reactions of alkali metal hydrogen phosphates. J Phys Chem. 1956;60:863–7.

    Article  CAS  Google Scholar 

  3. Thilo E. Condensed phosphates and arsenates in Advances in inorganic chemistry and radiochemistry, vol 4, edited by Emeleus HJ, Sharpe AG (Academic Press, New York, 1962).

  4. Haile SH, Boysen DA, Chisholm CRI, Merle RB. Solid acids as fuel cell electrolytes. Nature. 2001;410:910–3.

    Article  CAS  Google Scholar 

  5. Uda T, Boysen DA, Haile SM. Thermodynamic, thermomechanical, and electrochemical evaluation of CsHSO4. Solid State Ion. 2005;176:127–33.

    Article  CAS  Google Scholar 

  6. Castillo J, Materon EM, Castillo R, Vargas RA, Bueno PR, Varela JA. Electrical relaxation in proton conductor composites based on (NH4)H2PO4/TiO2. Ionics. 2009;15:329–36.

    Article  CAS  Google Scholar 

  7. Lim AR, Lee K-S. High temperature behavior of NH4H2PO4 studied by single-crystal and MAS NMR. Solid State Sci. 2013;21:54–8.

    Article  CAS  Google Scholar 

  8. Sun C, Xue D. Crystallization behaviors of KDP and ADP. Optical Mater. 2014;36:1966–9.

    Article  CAS  Google Scholar 

  9. Zhou H, Wang F, Xu M, Liu B, Liu F, Zhang L, Xu X, Sun X, Wang Z. Raman spectral characterization of NH4H2PO4 single crystals: effect of pH on microstructure. J Cryst Growth. 2016;450:6–13.

    Article  CAS  Google Scholar 

  10. Sangwal K, Mielniczek-Brzo E. Antisolvent crystallization of aqueous ammonium dihydrogen phosphate solutions by addition of acetone at different rates. Cryst Res Technol. 2016;51:475–90.

    Article  CAS  Google Scholar 

  11. Ganesh V, Shkir M, Alfaify S, Yahia IS. Effect of Co2+ doping on solubility, crystal growth and properties of ADP crystals. J Cryst Growth. 2016;449:47–56.

    Article  CAS  Google Scholar 

  12. Gorodylova N, Kosinova V, Dohnalova Z, Sulcova P, Belina P. Thermal stability and colour properties of CuZr4(PO4)6. J Therm Anal Calorim. 2016;126:121–8.

    Article  CAS  Google Scholar 

  13. Lim AR, Kim SH. Structural and thermodynamic properties of Tutton salt K2Zn(SO4)2·6H2O. J Therm Anal Calorim. 2016;123:371–6.

    Article  CAS  Google Scholar 

  14. Lee K-S. Hidden nature of the high-temperature phase transitions in crystals of KH2PO4-type: is it a physical change? J Phys Chem Solids. 1996;57:333–42.

    Article  CAS  Google Scholar 

  15. Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon Press; 1977.

    Google Scholar 

  16. Lasave J, Koval SF, Migoni RL. Coexistence of ferroelectric and antiferroelectric microregions in the paraelectric phase of NH4H2PO4 (ADP). Phys B. 2009;404:2749–50.

    Article  CAS  Google Scholar 

  17. Ishibashi Y, Ohya S, Takagi Y. A theory of the phase transition in ADP. J Phys Soc Japan. 1972;33:1545–50.

    Article  CAS  Google Scholar 

  18. Tenzer L, Frazer BC, Pepinsky R. A neutron structure analysis of tetragonal NH4H2PO4. Acta Cryst. 1958;11:505–9.

    Article  CAS  Google Scholar 

  19. Hewat AW. Location of hydrogen atoms in ADP by neutron powder profile refinement. Nature. 1973;246:90–1.

    Article  CAS  Google Scholar 

  20. Keeling RO Jr, Pepinsky R. An X-ray diffraction study of the transition in NH4H2PO4 at 148 K. Z Kristallogr. 1955;106:236–65.

    CAS  Google Scholar 

  21. Matsushita E, Matsubara T. The role of hydrogen bonds in antiferroelectricity of NH4H2PO4. J Phys Soc Jpn. 1987;56:200–7.

    Article  CAS  Google Scholar 

  22. Viswanath RS, Miller PJ. High temperature phase transition in NH4H2PO4. Solid State Commun. 1979;32:703–6.

    Article  CAS  Google Scholar 

  23. Torijano E, Vargas RA, Diosa JE, Mellander BE. High temperature phase transitions of NH4H2PO4. Phys Stat Solidi (b). 2000;220:659–62.

    Article  CAS  Google Scholar 

  24. Park JH, Lee K-S, Kim JB. Impedance relaxation of KH2PO4 at high temperatures. J Phys: Condens Matter. 1996;8:5491–9.

    CAS  Google Scholar 

  25. Lee K-S. Surface transformation of hydrogen-bonded crystals at high-temperatures and topochemical nature. Ferroelectrics. 2002;268:369–74.

    Article  Google Scholar 

  26. Park JH, Lee K-S, Choi BC. High-temperature transformation in KH2PO4 and RbH2PO4 crystals. J Phys: Condens Matter. 2001;13:9411–9.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education Science and Technology (2016R1A6A1A03012069) and (2015R1A1A3A04001077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ae Ran Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A.R., Chae, S.A. Phase-transition-like phenomenon of NH4H2PO4 observed using MAS NMR and static NMR near characteristic temperature. J Therm Anal Calorim 130, 885–889 (2017). https://doi.org/10.1007/s10973-017-6457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6457-3

Keywords

Navigation